

System
Development

Chess
A2 Computing Coursework Aman Gill

Aman Gill 7276

1

Contents
Description of the current system & background... 5

The Problem .. 5

Identification of the prospective user(s) ... 5

Identification of User Needs & Acceptable Limitations .. 6

Data source(s) and destination(s) ... 6

Data volumes .. 6

Analysis data dictionary .. 7

Data flow diagrams (DFDs) (existing and proposed system) to level 1 .. 7

Existing System ... 7

Proposed System .. 9

Objectives for the proposed system ... 10

Realistic appraisal of the feasibility of potential solutions ... 11

Justification of chosen solution .. 12

Flow Chart ... 13

Class Definitions .. 13

Algorithms Using Pseudocode .. 14

Global Variables .. 14

The Rules of Chess .. 14

The Initial Position of the Pieces ... 14

General Piece Rules... 15

Individual Piece Rules ... 17

The Game Class ... 22

The Board Class ... 30

Timers ... 33

Saving the Text Log ... 34

Class Diagrams .. 35

Hardware Specification ... 37

Design Data Dictionary .. 37

Interface Design .. 38

Preliminary Test Plan .. 40

System Overview .. 41

Maintenance ... 41

Changing the Piece Images ... 41

Aman Gill 7276

2

Changing the Background Colour of the PictureBoxes ... 41

Progression from Design Stage and Problems during Implementation ... 42

Bugs ... 42

Outline Test Plan ... 44

Test Results ... 44

Fig. 1-1 ... 48

Fig. 1-2 ... 48

Fig. 1-3 ... 49

Fig. 1-4 ... 49

Fig. 1-5 ... 50

Fig. 1-6 ... 50

Fig. 1-7 ... 51

Fig. 1-8 ... 51

Fig. 2-1a ... 52

Fig. 2-1b ... 52

Fig. 2-2 ... 53

Fig. 2-3 ... 53

Fig. 2-4 ... 54

Fig. 2-5 ... 54

Fig. 3-1a ... 55

Fig. 3-1b ... 55

Fig. 3-2a ... 56

Fig. 3-2b ... 56

Fig. 3-3a ... 57

Fig. 3-3b ... 57

Fig. 3-4a ... 58

Fig. 3-4b ... 58

Fig. 3-5a ... 59

Fig. 3-5b ... 59

Fig. 3-6a ... 60

Fig. 3-6b ... 60

Fig. 3-7a ... 61

Fig. 3-7b ... 61

Fig. 3-7c ... 62

Aman Gill 7276

3

Fig. 4-1 ... 62

Fig. 4-2 ... 63

Fig. 4-3 ... 63

Fig. 4-6 ... 64

Fig 4-7a .. 64

Fig. 4-7b ... 65

Fig. 5-1a ... 65

Fig. 5-1b ... 66

Fig. 5-1c ... 66

Fig. 5-1d ... 67

Fig. 5-1e ... 67

Fig. 5-2a ... 68

Fig. 5-2b ... 68

Fig. 5-2c ... 69

Fig. 5-2d ... 69

Fig. 5-2e ... 70

Fig. 5-3a ... 70

Fig. 5-3b ... 71

Fig. 5-4a ... 71

Fig. 5-4b ... 72

System Objectives ... 73

Analysis of Feedback ... 75

Potential Improvements ... 76

Installation .. 77

Basic Playing .. 77

Moving Pieces ... 77

Castling .. 78

Pawn Promotion ... 79

When is it Check or Checkmate? .. 81

Resetting the Board .. 81

Using the Clocks .. 82

Normal Clock ... 82

Speed Chess .. 82

Saving the Move Log ... 83

Aman Gill 7276

4

Full Program Listing ... 84

Main Form ... 84

Game Class .. 90

Board Class .. 112

Piece Class ... 115

Pawn Class ... 116

King Class... 119

Queen Class ... 120

Knight Class ... 121

Rook Class ... 122

Bishop Class... 122

Aman Gill 7276

5

Analysis

Description of the current system & background

The school chess club meets once a week at lunchtimes to improve upon their chess skills

and to compete against each other.

The system currently being used by the chess club members is to use a physical chess

board, with a manual chess clock that requires the users to press a button once they have

made their move. Pencil and paper is generally used to record the moves made in a game.

There are limitations to this system. A button has to be pressed on the clock after each move

has been made. This means that, due to the delay from the player making the move and

pressing the button, more time will be taken off the clock than was actually used by the

player to make the move.

Another limitation is manually recording the moves on paper. Whoever is recording the

moves can make a mistake in writing down the moves, and the paper can also easily be

misplaced or damaged. If the chess clocks were being used, this would also mean that

either a third person would have to be present to record the moves, or the players would

have to record their moves themselves, which would use even more of the player’s time.

The Problem

The chess club members don’t have a reliable way to record their moves in a chess game,

or to replay through past games to see where mistakes have been made. Also, they do not

have a way to automatically change the turn on the clock once a move has been made.

Identification of the prospective user(s)

My client will be Mr RG Patten, who is the head of the school chess club. I will be consulting

him to work out the specifications of my program.

The users of the system will primarily be the members of the chess club. They will primarily

be using the chess program as a means to easily record the moves in a game, and to replay

their games back to them, with the added functionality of automatically changing the turn on

the clock.

Aman Gill 7276

6

Identification of User Needs & Acceptable Limitations

The system must follow the rules of chess, and not allow the player’s to deviate from these

rules. This is so that the system can be used as a teaching aid to show what is and is not a

valid move.

The system must include accurate chess notation for each move. This is to familiarise

players with correct notation and also so that Mr Patten can look through the game and

show the players any mistakes they are making.

The system should include clocks. This is to get the players to think ahead and make

decisions fast.

The system could include a way of replaying through previous games. This is so that games

can be easily reviewed for mistakes, with a visual aid of how the current game looks.

However, this could be difficult and is not entirely necessary.

Data source(s) and destination(s)

The user will input few forms of data. The main source of data will be the user clicking on

pieces on the virtual board, which will result in them moving. The user can also input the

amount of time they want the clocks to run for, and the name of the text file the system

creates from the Move Log. All of this data can be input using a keyboard and/or a mouse.

There will be an option for the user to save the log of moves to a text file, the name of which

will be entered by the user. This text file can then be loaded by entering the name of the text

file after clicking the “load” button.

The sole data destination will be the screen, which will display the chess board, the position

of pieces on the board, the time remaining for each player, a log of all moves made in the

current game, and will indicate whose turn it is.

After every move, the board will be refreshed to show the new positions of the pieces on the

board. The turn indicator will change after each move. The log of the moves will be added to

after each move. The time remaining on the chess clock will change each second for the

player whose turn it is.

Data volumes

The program will be able to store a log of all the moves in a game of chess that has been

played in a text file. The size of the text file will depend on the length of the game (usually

between 20 and 50 moves); it will be about 8 bytes per turn, as well as about 20 bytes extra

to record how much time is left for each player, and whose turn it is (or if checkmate has

Aman Gill 7276

7

been reached). For an average game of about 35 moves, this will produce a text file of about

300 bytes.

There will be 12 PNG images, each around 4.5 kb in size.

Analysis data dictionary

The program will not use a database, and will not store much data to be used in the

program. The data it will be using are 12 PNG images: two for each type of piece (one of

each colour).

Data flow diagrams (DFDs) (existing and proposed system) to level 1

Existing System

Level 0

Aman Gill 7276

8

Level 1

Aman Gill 7276

9

Proposed System

Level 0

Aman Gill 7276

10

Level 1

Objectives for the proposed system

· There must be a visual interactive 2-D grid, which shows the position of the pieces,

and allows the player to make moves by clicking on them

· When a piece is clicked, all possible moves should be highlighted on the board

Aman Gill 7276

11

· The program must obey the standard rules of chess, and must not allow players to

disobey these rules

· If a player inputs an invalid move, the pieces will stay in the same position on the

board

· The program must include the special rules of Castling, En Passant and Pawn

Promotion

· The program must include checks for whether a player is in check or checkmate, and

notify the user when either of these happen.

· There should be a log of all the moves made in the game, with an option to save the

log to a text file

· There must be a reset button to return the board to its starting state

· There should be an indicator to show whose turn it is

· The grid spaces on the chess board should be numbered on the vertical axis, and

lettered on the horizontal axis

· The program must incorporate a chess clock, giving each player a certain amount of

time to make their moves

· The program should include a pause button, which will stop the clocks to allow the

players to have a break

· There must be an option to decide whether the game will be timed, and if so how

much time each player will have, as well as how the game will be timed

Realistic appraisal of the feasibility of potential solutions

A manual solution to this problem would be to have a third person, other than the two playing

the game, to record the moves in the game. This is impractical, as there has to be a third

person, and there might not always be someone available to fulfil this requirement. The third

person might also make a mistake with recording the moves in the game. Also there is not a

way to automatically move the clock to the next turn with this solution.

There is no clear solution involving generic software to solve the problem. Any attempted

solution would still involve manually inputting the moves into a log and manually changing

the turn on the clocks.

There are a number of off-the-shelf chess programs available. Of the ones I looked at, some

did have the function of having a chess clock, but none of them had the ability to create a

record of all the moves played. These programs are quite cheap, but they would not be a full

solution to the problem.

Bespoke software is the optimal choice, as it can fulfil the user’s needs entirely. It addresses

all of the user’s requests, and creates a system from scratch in order to fulfil them. It is,

however, the most expensive solution, as all the costs of development fall on the sole client.

Aman Gill 7276

12

Justification of chosen solution

I have chosen a bespoke software solution to meet to user’s needs. The interview I had with

my client suggested that the most effective solution would be a software solution, and from

looking at the different possible solutions earlier, bespoke is certainly the optimal choice, as

it is the only solution to completely fulfil the user’s needs.

The solution will be programmed in Visual Basic.NET, in order to take advantage of its

Object Oriented capabilities. Visual Studio also allows me to create a good graphical

interface very easily, and has pre-built classes for many objects that I will be using for my

interface.

Aman Gill 7276

13

Design

Flow Chart

Class Definitions

● Piece

○ This class will contain general information used by any instance of a piece

○ Properties:

■ IsWhite (Boolean) - This will indicate what colour the piece is. A “true” value

means the piece is white, and a “false value means the piece is black.

■ PositionX (Integer) - The X coordinate of the position of the piece

■ PositionY (Integer) - The Y coordinate of the position of the piece

■ Active (Boolean) - This indicates whether or not the piece has been captured.

○ This will be the parent class to 6 other classes, one for each type of piece. Each of

these classes will inherit the properties of the “Piece” class, and will have their own

individual methods to generate a list of possible moves when a piece is clicked.

● Board

○ This will be responsible for drawing the positions of all the pieces on the board.

○ After each turn, it looks at the Move object created for the last turn, and changes the

images on the screen based on the initial position of the piece, the end position and

Aman Gill 7276

14

the information of whether or not there was a special move, and which special move if

there was one.

○ It will also be responsible for highlighting possible moves on the board.

● Game

○ This class will create all of the Piece objects

○ It will handle all functions not directly related to the on-screen board or

checking valid moves for specific piece rules (e.g. moving pieces, initializing

the game, etc.)

Algorithms Using Pseudocode

Global Variables

● Grid (8x8 String Array) - In each position of the array, the name of the Piece object that is

situated in the corresponding square is stored. If there is no piece, there will be no value

stored in that position.

● ValidCheck (8x8 Boolean Array) - Used when checking valid moves; any squares that are the

destination of valid moves are marked as true, while any other squares are marked as false

● PieceClick (Boolean) - Used to check whether a square has been clicked

● X1, Y1 (Integer) - Used to indicate the coordinates of the initial square

● CastleWQMoved, CastleWKMoved, CastleBQMoved, CastleBKMoved (Boolean) - Used to

indicate whether either of the pieces in a particular castle move have moved.

● CastleWQ, CastleWK, CastleBQ, CastleBK (Boolean) - Used to indicate whether a particular

Castling move is valid.

● EnPassant (Boolean) – True when a pawn has moved forward two spaces the previous turn,

meaning an En Passant move is possible.

● EPPosX, EPPosY (Boolean) – When a pawn moves forward two spaces, these variables

store the destination position of that pawn.

● WhiteTimeStore, BlackTimeStore (Double) – These store how much time each player has left

on the clocks.

● WhitePaused (Boolean) – Used when the clocks are paused to store which clock was running

at the time.

The Rules of Chess

I checked two sources to make sure that I had a reliable set of rules for chess. The sources are as

follows:

● http://www.chess.com/learn-how-to-play-chess

● http://en.wikipedia.org/wiki/Rules_of_chess

The Initial Position of the Pieces

The image below shows how the board is initially laid out.

http://www.chess.com/learn-how-to-play-chess
http://en.wikipedia.org/wiki/Rules_of_chess

Aman Gill 7276

15

General Piece Rules

● Pieces cannot move through other pieces, with the exception of the Knight, which may ‘leap’

over other pieces.

● Most pieces can ‘capture’ an enemy piece (piece of the opposite colour) by landing on the

same square as that enemy piece. The exception to this is the pawn, which has separate

rules for moving and capturing, detailed below.

● A piece cannot capture a piece of the same colour.

The following algorithms will make sure these rules are followed, and will be implemented in the Piece

parent class.

CheckSpaces (X1, Y1, X3, Y3, Valid)

This needs to check whether there are pieces in the spaces between the starting and ending

positions. This will check what type of movement it is (diagonal, horizontal, etc.), and the number of

spaces moved in that direction, and will use these to determine which spaces need to be checked. If

the ending position is one space away from the starting position in the corresponding direction, then

this check will be skipped, as there are no spaces between that need to be checked.

These values of X3 and Y3 indicate that the piece is only moving one space, and

therefore there will be no spaces between to check

 If X3 = 1 or 0 and Y3 = 1 or 0 then

 Valid = True

 Else

If the absolute values of X3 and Y3 are the same, the movement is diagonal. This

accounts for the four different directions that diagonal movement can take.

 If Abs(X3) = Abs(Y3) then

 If X3 > 0 and Y3 > 0

For i = 1 to X3 - 1

If Grid(X1+i, Y1+i) contains piece

Valid = False

ElseIf X3 > 0 and Y3 < 0

Aman Gill 7276

16

For i = 1 to X3 - 1

If Grid(X1+i, Y1-i) contains piece

Valid = False

ElseIf X3 < 0 and Y3 > 0

For i = 1 to Y3 - 1

If Grid(X1-i, Y1+i) contains piece

Valid = False

ElseIf X3 < 0 and Y3 < 0

For i = 1 to Abs(X3) - 1

If Grid(X1-i, Y1-i) contains piece

Valid = False

If X3 = 0, the movement must be vertical, as there is no change in the horizontal

component.

 ElseIf Abs(X3) = 0 then

 If Y3 > 0

 For i = 1 to Y3 - 1

 If Grid(X1, Y1+i) contains piece

 Valid = False

 ElseIf Y3 < 0

 For i = 1 to Abs(Y3) - 1

 If Grid(X1, Y1-i) contains piece

 Valid = False

If Y3 = 0, the movement must be horizontal, as there is no change in the vertical

component.

 ElseIf Abs(Y3) = 0 then

 If X3 > 0

 For i = 1 to X3 - 1

 If Grid(X1+i, Y1) contains piece

 Valid = False

 ElseIf X3 < 0

 For i = 1 to Abs(X3) - 1

 If Grid(X1-i, Y1) contains piece

 Valid = False

CheckDestination (X2, Y2, Valid)

This subroutine checks the contents of the destination square. If the square contains the same colour

piece as the piece that is moving, the move is invalid. If the square is empty or contains an enemy

piece, the move is valid. This subroutine is used by the check functions for all the different pieces,

except for the

If Grid(X2, Y2) contains same colour piece

 Valid = False

ElseIf Grid(X2, Y2) contains opposite colour piece

 Valid = True

Else

 Valid = True

Aman Gill 7276

17

CheckValidMoves

This subroutine will go through every square to check if it is a valid move for

the piece.

For j = 0 to 7 ‘j’ will represent the y coordinate of the piece being checked

 For i = 0 to 7 ‘i’ will represent the x coordinate of the piece being

checked

 Call Rules (i, j) Rules is the subroutine for checking a valid move

for whichever piece has

been clicked, ‘i’ and ‘j’ are the values being put in

for X2 and Y2

 If the move is valid, the position on the ValidCheck array is marked

True.

 If Valid = True

 ValidCheck(i, j) = True

 Else

 ValidCheck(i, j) = False

 Next

Next

This loops so that all squares on the board are checked

Individual Piece Rules

Each piece has separate rules on how it can move, and so I will be using separate algorithms for

each different type of piece in order to check whether a particular move is valid.

The algorithms for checking whether a move is valid will use the following variables:

X1 (Integer) = X coordinate starting position

X2 (Integer) = X coordinate end position

X3 (Integer) = Difference of X coordinates in starting and end position (X2 - X1)

Y1 (Integer) = Y coordinate starting position

Y2 (Integer) = Y coordinate end position

Y3 (Integer) = Difference of Y coordinates in starting and end position (Y2 - Y1)

Valid (Boolean) = Indicates whether the move is valid or not

The following algorithms are used only to check whether a given move is valid, and are not

responsible for the movement of the pieces. When a piece is clicked, every possible move on the

board will be checked using the appropriate algorithm, and a list of valid moves will be generated.

These moves will be highlighted on the board for the user.

The algorithms for each different type of piece will be implemented into its own Piece child class (i.e.

the rules for the Pawn will be put into the Pawn child class, etc.).

The Pawn

While the Pawn is in its initial position, having not moved so far during the game, it may move 2

spaces forward. Otherwise, the Pawn may move one space. The Pawn may not move backwards. If

there is an enemy piece one square diagonally in front of the pawn, it may move into that square and

Aman Gill 7276

18

capture the enemy piece. The pawn may not move in this way otherwise, nor can it capture in any

other way.

The Pawn also has two special moves that it can perform; Pawn promotion and En Passant. Pawn

promotion happens when a pawn reaches a square on the opposite side of the board to where it

started. Once it reaches that square, it is promoted to a Queen, a Rook, a Bishop or a Knight,

depending on the choice of the user. En Passant is a special capture that can occur immediately after

a pawn has moved two spaces from its starting position, and an enemy pawn is in a position where it

could have taken the pawn, had it only moved one space. The enemy pawn can then capture that

pawn, with the end positions the same as they would be if the first pawn only moved one space

forward.

Property Promotion (Char) Indicates whether a piece is promoted, and if so what

piece it has been promoted to

Rules (X2, Y2)

If Promotion = Nothing then

If X3 = 0 and Y3 = 2 and Y1 = 2 then

 Valid = True ‘Sets the Valid variable to True initially

 CALL CheckSpaces ‘Since the piece is moving 2 spaces, the square

between the starting and destination squares needs to be checked for a piece.

 CALL PawnMove ‘Pawns have different rules for moving and attacking,

so separate subroutines will be created to check the destination square for

different types of movement.

ElseIf X3 = 0 and Y3 = 1 then

 Valid = True

 CALL PawnMove

ElseIf Abs(X3) = 1 and Y3 = 1 then ‘Abs is the function to provide an

absolute value of X3, so that a value of -1 will be given as 1.

 Valid = True

 Call PawnAttack ‘As the rules for a pawn are different if they are

attacking, a separate subroutine will be created to check the destination square

for a pawn moving diagonally.

Else Valid = False

ElseIf Promotion = “Q” then A Promotion value of Q,means the Pawn has been

promoted to a Queen

 CALL Queen Rules

ElseIf Promotion = “N” then Promoted to Knight

 CALL Knight Rules

ElseIf Promotion = “B” then Promoted to Bishop

 CALL Bishop Rules

ElseIf Promotion = “R” then Promoted to Rook

 CALL Rook Rules

RETURN Valid

Promotion (X, Y)

This will be used by the Game class after a pawn has been moved, to check whether that pawn has

moved to the other end of the board. If it has, a dialogue box will appear, and the user will input which

Aman Gill 7276

19

piece he or she wants to promote to (Q, N, R or B). That value will then be assigned to the Promotion

variable.

If (IsWhite = True And Y = 7) Or (IsWhite = False And Y = 0) Then

 Promotion = INPUT

 If Promotion is Not “Q”, “N”, “R” or “B” then

 OUTPUT “That is not a valid input”

 CALL Promotion If the input is not valid, another input is requested

PawnMove (X2, Y2, Valid)

If Grid(X2, Y2) contains any piece

 Valid = False

Else

 Valid = True

PawnAttack (X2, Y2, Valid)

If Grid(X2, Y2) contains opposite colour piece

 Valid = True

Else

 Valid = False

EnPassantCheck

If a pawn has moved two spaces forward the previous turn, this will check whether an En Passant

move is available for the pawn being moved.

If EnPassant = True then

 If IsWhite = True then

 If Abs(EPPosX – PositionX) = 1 AND EPPosY = PositionY then

 ValidCheck(EPPosX, EPPosY + 1) = True

 ElseIf IsWhite = False then

 If Abs(EPPosX – PositionX) = 1 AND EPPosY = PositionY then

 ValidCheck(EPPosX, EPPosY - 1) = True

The Rook

The Rook can move any number of spaces horizontally or vertically.

Rules

If Abs(X3) > 0 and Y3 = 0

 Valid = True

 CALL CheckSpaces

 CALL CheckDestination

ElseIf X3 = 0 and Abs(Y3) > 0

 Valid = True

 CALL CheckSpaces

 CALL CheckDestination

Aman Gill 7276

20

Else

 Valid = False

The Bishop

The Bishop may move any number of spaces diagonally.

Rules

If Abs(X3) = Abs(Y3) and X3 Not Equal to 0

 Valid = True

 CALL CheckSpaces

 CALL CheckDestination

Else

 Valid = False

The Queen

The Queen may move any number of spaces horizontally, vertically or diagonally.

Rules

If Abs(X3) = Abs(Y3) and X3 Not Equal to 0

 Valid = True

 CALL CheckSpaces

 CALL CheckDestination

ElseIf Abs(X3) > 0 and Y3 = 0

 Valid = True

 CALL CheckSpaces

 CALL CheckDestination

ElseIf X3 = 0 and Abs(Y3) > 0

 Valid = True

 CALL CheckSpaces

 CALL CheckDestination

Else

 Valid = False

The King

The King may move one space in any direction around it. If it has not moved, and the rook closest to it

has also not moved, a special move called ‘Castling’ may be performed. In this, the King moves two

spaces towards the Rook, and the Rook moves towards the King, landing on the other side of the

King. This can be done one Kingside or Queenside, as long as there are no pieces between the King

and Rook, and neither the King nor the Rook have moved from their initial position.

Rules

If (Abs(X3) = 1 or X3 = 0) AND (Abs(Y3) = 1 or Y3 = 0) AND NOT(X3 = 0 and Y3 = 0)

 Valid = True

 CALL CheckDestination

Else

Aman Gill 7276

21

 Valid = False

CastleCheck

If IsWhite = True then

 If CastleWKMoved = False AND Grid(5, 0) = Nothing AND Grid(6, 0) = Nothing

then

 CastleWK = True

 ValidCheck(6, 0) = True

 If CastleWQMoved = False AND Grid(1, 0) = Nothing AND Grid(2, 0) = Nothing

AND_

 Grid(3, 0) = Nothing then

 CastleWQ = True

 ValidCheck(2, 0) = True

If IsWhite = False then

 If CastleBKMoved = False AND Grid(5, 7) = Nothing AND Grid(6, 7) = Nothing

then

 CastleBK = True

 ValidCheck(6, 7) = True

 If CastleBQMoved = False AND Grid(1, 7) = Nothing AND Grid(2, 7) = Nothing

AND_

 Grid(3, 7) = Nothing then

 CastleBQ = True

 ValidCheck(2, 7) = True

The Knight

The Knight can move in an ‘L’ shape, one space either horizontal or vertical, and two spaces in the

other direction. It is the only piece which can jump over other pieces, and therefore does not need to

go through the ‘CheckSpaces’ subroutine.

Rules

If Abs(X3) = 2 and Abs(Y3) = 1

 Valid = True

 CALL CheckDestination

Elseif Abs(X3) = 1 and Abs(Y3) = 2

 Valid = True

 CALL CheckDestination

Else

 Valid = False

Aman Gill 7276

22

The Game Class

The variables used specifically in the Game class are as follows:

● WhiteTurn (Boolean) - Indicates whose turn it is; True indicates White Turn, False therefore

indicates Black Turn

● SpecialMove (String) - Indicates whether a special move has been made, and if so

specifically which one

● TurnCount (Integer) - A counter for how many turns have gone through in the current game

The Game class will also create all Piece objects, as well as the Board object. How the Piece objects

are named is as follows:

● “W” or “B” depending on the colour of the piece

● The name of the type of piece (e.g. “Pawn” or “Knight”)

● A number to uniquely identify the piece

For example, “WPawn5” or “BBishop2”.

Initializing the Game

When the game starts, all the piece properties and variables must be set to their initial values, the

background colour of the squares must be set to their default values, the images of the pieces must

be set to their initial positions and the movelog must be cleared. The following function will do this

upon starting the program, and will also be used by the Reset Board button.

InitializeGame

Call InitializePieces

Call InitializeVariables

MoveLog = Nothing

Call RevertColour These two subroutines are part of the Board class

Call ResetPiecePositions

InitializePieces

This will go through every Piece object and set each property to its initial value. For most pieces this

will include IsWhite, PositionX, PositionY and Active, but for Pawns the property Promotion is also

there.

e.g.

WPawn1.IsWhite = True

WPawn1.PositionX = 0

WPawn1.PositionY = 0

WPawn1.Active = True

WPawn1.Promotion = “”

This will also initialize the values of all positions in the Grid array.

Aman Gill 7276

23

e.g.

Grid(0, 0) = “WRook1”

Grid(1, 0) = “WKnight1”

For j = 2 to 5

 For i = 0 to 7

 Grid(i, j) = Nothing

 Next

Next

InitializeVariables

If WhiteTurn = False then

 Call ChangeTurn

TurnCount = 0

CastleWKMoved = False

CastleWQMoved = False

CastleBKMoved = False

CastleBQMoved = False

Clicking on a Square

When a square is clicked, the handler needs to check the value on the Grid array that corresponds to

this square. If that space is empty, nothing will happen. If there is a piece on the square, the object of

that particular piece will be located, and the CheckValidMoves subroutine will be called.

SquareClick (X, Y)

If PieceClick = False PieceClick is a Boolean variable which indicates whether a

piece has been clicked

 If Grid(x, y) Not empty x and y being the corresponding coordinates of

whichever picture box has been clicked

 CALL CheckTurn

Else

 If ValidCheck(x, y) = True

 CALL MovePiece

 CALL ChangeTurn

 CALL RevertColour

 PieceClick = False

 FalsifySpecialMoves()

CheckTurn (X, Y)

Checks whether a piece can be clicked depending on which turn it is.

If WhiteTurn = True then

 If Grid(X, Y) starts with “W” then X and Y represent the coordinates of the

square that was clicked

 Call CallRules(X, Y)

 Call DisplayValidMoves

 PieceClick = True

Aman Gill 7276

24

ElseIf WhiteTurn = False then

 IF Grid(X, Y) starts with “B” then

 Call CallRules(X, Y)

 Call DisplayValidMoves

 PieceClick = True

ChangeTurn

Self-explanatory; simply switches the turn.

If WhiteTurn = True then

 WhiteTurn = False

 TurnIndicator = “Black Turn”

If WhiteTurn = False then

 WhiteTurn = True

 TurnIndicator = “White Turn”

CallRules (X, Y)

This subroutine looks at the corresponding value in the Grid array for the square that has been

clicked, and calls the CheckValidMoves routine for whichever Piece object the value in the Grid array

refers to.

e.g.

If Grid(X, Y) = “BPawn1" then

 Call BPawn1.CheckValidMoves

FalsifySpecialMoves

Resets special move checks so that they do not always appear as valid after they have been marked

as valid once.

CastleWK = False
CastleWQ = False
CastleBK = False
CastleBQ = False

Moving the Pieces

Once the user has made a move that has been listed as valid by the above algorithms, the system

needs to change values in memory. Certain values in the Grid array have to be changed, the

PositionX and PositionY values of the Piece object need to be changed to the X and Y values of the

destination square. In the case of castling, this has to be done for two pieces. If a piece has been

captured in the move, the object for that piece needs to be destroyed. It must also be slightly altered

for En Passant, as a piece is captured that is not in the destination position.

MovePiece (X, Y)

If CastleWK = True AND X = 6 AND Y = 0 then

 E1 IMAGE = NOTHING

Aman Gill 7276

25

 F1 IMAGE = WhiteRook

 G1 IMAGE = WhiteKing

 H1 IMAGE = NOTHING

 Grid(4, 0) = NOTHING

 Grid(5, 0) = “WRook2”

 Grid(6, 0) = “WKing”

 Grid(7, 0) = NOTHING

 ChangeCoordinates(5, 0)

 ChangeCoordinates(6, 0)

 SpecialMove = “CastleWK”

 RecordMove

ElseIf CastleWQ = True AND X = 2 AND Y = 0 then

A1 IMAGE = NOTHING

 C1 IMAGE = WhiteKing

 D1 IMAGE = WhiteRook

 E1 IMAGE = NOTHING

 Grid(0, 0) = NOTHING

 Grid(2, 0) = “WKing”

 Grid(3, 0) = “WRook1”

 Grid(4, 0) = NOTHING

 ChangeCoordinates(2, 0)

 ChangeCoordinates(3, 0)

 SpecialMove = “CastleWQ”

 RecordMove

ElseIf CastleBK = True AND X = 6 AND Y = 7

E8 IMAGE = NOTHING

 F8 IMAGE = BlackRook

 G8 IMAGE = BlackKing

 H8 IMAGE = NOTHING

 Grid(4, 7) = NOTHING

 Grid(5, 7) = “BRook2”

 Grid(6, 7) = “BKing”

 Grid(7, 7) = NOTHING

 ChangeCoordinates(5, 7)

 ChangeCoordinates(6, 7)

 SpecialMove = “CastleBK”

 RecordMove

ElseIf CastleBQ = True AND X = 2 AND Y = 7

A8 IMAGE = NOTHING

 C8 IMAGE = BlackKing

 D8 IMAGE = BlackRook

 E8 IMAGE = NOTHING

 Grid(0, 7) = NOTHING

 Grid(2, 7) = “BKing”

 Grid(3, 7) = “BRook1”

 Grid(4, 7) = NOTHING

 ChangeCoordinates(2, 7)

 ChangeCoordinates(3, 7)

 SpecialMove = “CastleBQ”

 RecordMove

ElseIf EnPassant = True AND X = EPPosX And Abs(EPPosY – Y) = 1 AND X1 NOT X then

Aman Gill 7276

26

 RecordMove

 ChangeActive(EPPosX, EPPosY)

 EnPassantImageChange

 Grid(X, Y) = Grid(X1, Y1)

 Grid(X1, Y1) = NOTHING

 Grid(EPPosX, EPPosY) = NOTHING

 ChangeCoordinates(X, Y)

Else

 RecordMove

 CastleNull

 If Grid(X, Y) NOT NOTHING then

 ChangeActive(X, Y)

 ImageChange(X, Y)

 Grid(X, Y) = Grid(X1, Y1)

 Grid(X1, Y1) = NOTHING

 ChangeCoordinates(X, Y)

PawnPromotion(X, Y)

EnPassant = False

If Grid(X, Y) FIRST LETTER = “P” then

 If X1 = X AND Abs(Y-Y1) = 2 then

 EnPassant = True

 EPPosX = X

 EPPosY = Y

If the King has been put into check, checkmate is then checked for.

If CheckCheck(NOT WhiteTurn) = True then

 CheckMateCheck

ChangeCoordinates (X, Y)

This sub is used to change the position values of the Piece objects.

e.g.

If Grid(X, Y) = “BPawn1” then

BPawn1.PositionX = X

BPawn1.PositionY = Y

Etc.

CastleNull

This sub marks a castling move as invalid if either of the pieces involved in the castle move.

If Grid(X1, Y1) = “WRook1” then

 CastleWQMoved = True

If Grid(X1, Y1) = “WKing” then

 CastleWQMoved = True

 CastleWKMoved = True

If Grid(X1, Y1) = "WRook2"
CastleWKMoved = True

If Grid(X1, Y1) = "BRook1"
CastleBQMoved = True

Aman Gill 7276

27

If Grid(X1, Y1) = "BKing"
CastleBQMoved = True
CastleBKMoved = True

If Grid(X1, Y1) = "BRook2"
CastleBKMoved = True

ChangeActive (X, Y)

This sub switches the “Active” Boolean variable from true to false or vice-versa. It is used when a

piece is captured, or when checking whether a move puts the player’s own king in check.

e.g.

If Grid(X, Y) = “BPawn1” then

 BPawn1.Active = NOT BPawn1.Active

ElseIf Grid(X, Y) = “BPawn2” then

 BPawn2.Active = NOT BPawn1.Active

Etc.

PawnPromotion (X, Y)

If the piece being moved is a pawn and that pawn has not already been promoted, the corresponding

object's "Promote" subroutine is called, and then if the pawn is promoted, the image is changed

If Grid(X, Y) 2nd character = “P” then

 If Grid(X, Y) = “BPawn1” then

 If BPawn1.Promotion = NOTHING then

 BPawn1.Promote

 PromotedPawnImageChange(X, Y, BPawn1.Promotion, BPawn1.IsWhite)

 Else If Grid(X, Y) = “BPawn2” then

 If BPawn2.Promotion = NOTHING then

 BPawn2.Promote

 PromotedPawnImageChange(X, Y, BPawn2.Promotion, BPawn2.IsWhite)

Etc.

Recording the Moves

RecordMove (X, Y)

This sub creates a string of the chess notation of the move that was just made, and adds it to the

Move Log.

ChessNotation As String = NOTHING

If SpecialMove = “CastleWK” OR “CastleBK” then

 ChessNotation = “O-O”

ElseIf SpecialMove = “CastleWQ” or “CastleBQ” then

 ChessNotation = “O-O-O”

Else

 If Grid(X1, Y1) 2nd and 3rd characters = “Kn” then

 ChessNotation = “N”

 Else

Aman Gill 7276

28

ChessNotation = Grid(X1, Y1) 2nd character

 If Grid(X, Y) NOT NOTHING then

 ChessNotation = ChessNotation + “x”

 ChessNotation = ChessNotation + NumberToLetter(X) + (Y + 1)ToString

If WhiteTurn = True then

 TurnCount += 1

 MoveLogTEXT = MoveLogTEXT & vbNewLine & TurnCount & “.”

MoveLogTEXT = MoveLogTEXT & “ “ & ChessNotation

Checking for Check and Checkmate

Check is when a piece has been put into a position where it can capture the enemy King. When this

happens, a move must be made to get the King out of check. A player cannot make any move to put

their own King in Check.

When a King is put into Check, and the player cannot make any move to get the King out of Check,

Checkmate is reached.

CheckCheck (KingColourWhite As Boolean)

This checks whether a move puts a King in check, and returns true or false.

X, Y As Integer

Check As Boolean

If KingColourWhite = True then

 X = WKing.PositionX

 Y = WKing.PositionY

 If BPawn1.Rules(X, Y) = True AND BPawn1.Active = True then

 Check = True

 Same for all Black pieces, except for King

Else

 X = BKing.PositionX

 Y = BKing.PositionY

 If WPawn1.Rules(X, Y) = True AND WPawn1.Active = True then

 Check = True

 Same for all White pieces, except for King

RETURN Check

PutSelfInCheckCheck (X, Y, IsWhite)

This checks whether a move will put the player’s own King in check, deeming it invalid. Returns true

or false.

IniPos, FinPos As String

Valid As Boolean

IniPos = Grid(X1, Y1)

FinPos = Grid(X, Y)

ChangeActive(X, Y)

Grid(X1, Y1) = NOTHING

Grid(X, Y) = IniPos

Aman Gill 7276

29

If IniPos = “WKing” then

 WKing.PositionX = X

 WKing.PositionY = Y

ElseIf IniPos = “BKing” Then

 BKing.PositionX = X

 BKing.PositionY = Y

Valid = NOT CheckCheck(IsWhite)

Grid(X1, Y1) = IniPos

Grid(X, Y) = FinPos

ChangeActive(X, Y)

If IniPos = “WKing” then

 WKing.PositionX = X1

 WKing.PositionY = Y1

ElseIf IniPos = “BKing” Then

 BKing.PositionX = X1

 BKing.PositionY = Y1

RETURN Valid

CheckMateCheck

This sub is called when a King is put in check. It checks every piece of the opposite colour to see if it

can make a move that will leave the player’s King out of check. If such a move can be made,

CheckMate is marked as false.

CheckMate As Boolean

CheckMate = True

If WhiteTurn = True then

 If BPawn1.Active = True then

 CallRules(BPawn1.PositionX, BPawn1.PositionY)

 For j = 0 to 7

 For i = 0 to 7

 If ValidCheck(i, j) = True then

 CheckMate = False

 Next

 Next

Same for all Black Pieces

ElseIf WhiteTurn = False then

 If WPawn1.Active = True then

 CallRules(WPawn1.PositionX, WPawn1.PositionY)

 For j = 0 to 7

 For i = 0 to 7

 If ValidCheck(i, j) = True then

 CheckMate = False

 Next

 Next

Same for all White Pieces

Aman Gill 7276

30

The Board Class

Displaying the Valid Moves

Once a list of valid moves has been made, they will be highlighted on the screen. This will be done by

replacing the background of the picture boxes, which are the basis of the graphical representation of

the chess board. A yellow background will indicate any valid move, while any other squares will

remain as their default colour (White or Black).

DisplayValidMoves

This sub checks every square to see if it has been marked as a valid move, and if it has, it is

highlighted. The square that was clicked is indicated in green. If there is a Castle move valid, it is

indicated in red.

For j = 0 to 7

 For i = 0 to 7

 If ValidCheck(i, j) = True then

 Highlight(i, j)

 Next

Next

IniPosition As String = NumberToLetter(X1)

IniPoisition = IniPosition + (Y1 + 1).TOSTRING

IniPosition.BackColor = GREEN

If CastleWK = True then

 G1.BackColor = RED

ElseIf CastleWQ = True then

 C1.BackColor = RED

ElseIf CastleBK = True then

 G8.BackColor = RED

ElseIF CastleBQ = True then

 C8.BackColor = RED

Highlight (X, Y)

Changes the background colour of a given square to yellow.

Str as String

Str = NumberToLetter(X)

Str = Str + (Y + 1).TOSTRING

Str.BackColor = YELLOW

NumberToLetter (X)

Converts an X coordinate into the corresponding letter for the name of a PictureBox,

Str as String

If X = 0 then

 Str = “A”

Aman Gill 7276

31

ElseIf X = 1 then

 Str = “B”

ElseIf X = 2 then

 Str = “C”

ElseIf X = 3 then

 Str = “D”

ElseIf X = 4 then

 Str = “E”

ElseIf X = 5 then

 Str = “F”

ElseIf X = 6 then

 Str = “G”

ElseIf X = 7 then

 Str = “H”

RETURN Str

Drawing the Pieces on the Board

ImageChange (X, Y)

Sets the images of the destination square to whatever was in the initial square then sets the image of

the initial square to nothing.

DestSquare, IniSquare As String

DestSquare = NumberToLetter(X) + (Y + 1).TOSTRING

IniSquare = NumberToLetter(X1) + (Y1 + 1).TOSTRING

If Grid(X1, Y1).TRIMLASTCHAR = “WPawn” then

 DestSquare.Image = WhitePawn

ElseIf Grid(X1, Y1).TRIMLASTCHAR = “BPawn” then

 DestSquare.Image = BlackPawn

'Same for all types of pieces of both colours

IniSquare.Image = NOTHING

PromotedPawnImageChange (X, Y, Promote, IsWhite)

Used to change a pawn’s image to whatever it has been promoted to, if it has been promoted.

Square as String

Square = NumberToLetter(X) & (Y + 1).TOSTRING

If IsWhite = True then

 If Promote = “Q” then

 Square.Image = WhiteQueen

ElseIf Promote = “N” then

 Square.Image = WhiteKnight

ElseIf Promote = “R” then

 Square.Image = WhiteRook

ElseIf Promote = “B” then

 Square.Image = WhiteBishop

ElseIf IsWhite = False then

 If Promote = “Q” then

Aman Gill 7276

32

 Square.Image = BlackQueen

ElseIf Promote = “N” then

 Square.Image = BlackKnight

ElseIf Promote = “R” then

 Square.Image = BlackRook

ElseIf Promote = “B” then

 Square.Image = BlackBishop

EnPassantImageChange (X, Y)

Image change when using En Passant. Usual ImageChange is called, and then the image of the

pawn that is captured is removed.

ImageChange(X, Y)

Square As String = NumberToLetter(EPPosX) + (EPPosY + 1).TOSTRING

Square.Image = NOTHING

Un-Highlighting the Valid Moves

RevertColour

Changes the background colour of all squares to their default colours

Square as String

For j = 1 to 8

 For i = 0 to 7

 Square = NumberToLetter(i) + j.TOSTRING

 If (i MOD 2 = 1 AND j MOD 2 = 0) OR (i MOD 2 = 0 AND j MOD 2 = 1)

then

 Square.BACKCOLOR = GRAY

 ElseIf (i MOD 2 = 0 AND j MOD 2 = 0) OR (i MOD 2 = 1 AND j MOD 2 = 1)

then

Setting the images to their original positions

ResetPiecePositions

Sets the images of all PictureBoxes to their initial states.

Square as String

A1.Image = WhiteRook

B1.Image = WhiteKnight

Etc. for all piece’s original positions

For j = 3 to 6

 For i = 0 to 7

 Square = NumberToLetter & j.TOSTRING

 Square.Image = NOTHING

 Next

Aman Gill 7276

33

Next

Timers

When the clocks are activated, they will count down for a given player on that player’s turn. When the

player makes a move, their timer will stop and the other player’s will start. For the NormalClock

setting, there will be an overall time for each player to make all of their moves. For the SpeedChess

setting, the player’s will have a fixed time in which to make each of their moves, and is reset upon the

start of their turns. The interval between timer ticks will be 0.1 seconds.

Starting the clocks

StartClocksClick

If the NormalClock checkbox is checked, this sub takes the input from the textbox under said

checkbox, and multiplies it by 60 to get a value in seconds, from the input being in minutes, and then

starts the timer. If the SpeedChess checkbox is checked, it takes the input from the textbox under that

checkbox, which will be the value in seconds, and then starts the timer.

If NormalClock is CHECKED then

 WhiteTimeStore = NormalClockInput * 60

 BlackTimeStore = NormalClockInput * 60

 WhiteTimer START

ElseIf SpeedChess is CHECKED then

 WhiteTimeStore = NormalClockInput

 BlackTimeStore = NormalClockInput

 WhiteTimer START

Handling Clock Ticks

WhiteTimerTick

WhiteTimeStore = WhiteTimeStore – 0.1

WhiteTime.Text = WhiteTimeStore / 60 & “:” & WhiteTimeStore MOD 60

If WhiteTimeStore < 0 then

 WhiteTimer STOP

 OUTPUT “Player White has run out of time!”

This will be exactly the same for the Black timer; all the “White”s will simply be replaced with “Black”.

Pause

This will stop whichever clock is running, and store which clock that was. Then, when it is clicked

again, that clock will resume

PauseClick

If ClockOff CHECKED = False Then

If WhiteTimer ENABLED = True Then

WhiteTimer STOP

WhitePaused = True

Aman Gill 7276

34

ElseIf BlackTimer ENABLED = True Then

BlackTimer STOP

WhitePaused = False

Else

 If WhitePaused = True Then

WhiteTimer START

Else

BlackTimer START

Saving the Text Log

This will write to the C drive root directory, as that is a common directory that all PCs will have. The

user will input a name for the file, and the method will write the file to the directory with that file name.

SaveLogClick

FileName as String

FileName = INPUT

FilePath as String

FilePath = “C:\” + FileName + “.txt”

CREATE FilePath

WRITE MoveLog.Text to FilePath

Aman Gill 7276

35

Class Diagrams

Aman Gill 7276

36

Aman Gill 7276

37

Hardware Specification

The program does not need a particularly fast processing speed to run, but it does need to

be fast enough that it can run without any delays. The program installation will also occupy a

very small amount of disc space, and the text logs that can be saved require very little space

also. The recommended minimum specifications for my program are as follows:

 5 MB disc space (for the program installations and any move logs that will be saved)

 A 2.5 GHz processor (this will be sufficient to ensure that the program will run with no

delays)

 At least 1 GB of main memory (this will help ensure that the program runs smoothly)

 A Mouse (An input device used to play the game, click the buttons, etc.)

 A Keyboard (An input device used to input how much time the user wants to have on their

clock, or which piece they want their Pawn to be promoted to, etc.)

 A Display Monitor

The desktop computer that resides in the room in which chess club occurs meets all of these

specifications and therefore will be optimal for running the program.

Design Data Dictionary

As previously stated in the Analysis Data Dictionary, the program will not utilise much stored

data. The data that will be stored in the installation of the program is only the images that will

be displayed on the interface.

The program will be using 12 PNG images: two for each type of piece (one of each colour).

These have transparent backgrounds so that the background colour of the PictureBoxes can

be seen behind them, and are 50x50 pixels in size. They will be stored in the Resources

folder.

Aman Gill 7276

38

Interface Design

The interface for my chess program must have some key features:

 A 2-D grid which will act as the visual display for the main game. The pieces will be moved by

interacting with this grid. The squares on this grid should be numbered on the vertical axis,

and lettered on the horizontal axis.

 A button that resets the board to its initial state.

 An indicator to show which player’s turn it currently is.

 A text log that records each move that each player makes.

 A button that allows the user to save the text log to a text file.

 Two clock indicators, one for each player, that show the remaining time for each player.

 An option to decide whether the game will be timed, and if so how it will be timed, and how

much time each player gets.

 A button to pause and start the clocks in case the users must take a break.

Originally, the PictureBoxes had alternating black and white backgrounds.

Aman Gill 7276

39

However, when I showed this to my end user, he requested that the black coloured squares

be changed, as the black pieces do not show up very well on them. I changed the black

colour to a light grey colour, and this is the result.

The black pieces are now distinct from the background colour of the PictureBoxes. I showed

this to my end user, and he was satisfied with the result.

This is my final interface design.

Aman Gill 7276

40

Preliminary Test Plan

Test Area Explanation

1 Check each piece’s individual rules to see if they
are followed correctly.

2 Check that each special move is functional.

3 Check that Check and Checkmate are working
properly.

4 Check that the movelog is recording moves
accurately, and that the save log function works.

5 Check that the timers are fully functional.

Aman Gill 7276

41

System Implementation and
Maintenance

Most of the information necessary for system maintenance can be found in the annotations

for the program code, included in the appendix. All variables, functions and sub-routines are

explained in these.

System Overview
This system is used for two players to play chess against each other. All valid moves a piece

can make are highlighted on-screen when a piece is clicked. The piece can then be moved

by clicking on one of these highlighted squares. If a non-highlighted square is clicked, the

pieces do not move, and the squares revert back to their previous colour. All the rules of

chess are followed by the system. The system includes a move log, which contains the

chess notation of all the moves made in the current game. This move log can be saved to a

text file with a function included in the system. The system also includes chess clocks, which

can be set to two different settings, and the amount of time given to each player is decided

by the user.

Maintenance

Changing the Piece Images
All the images for the pieces have been placed within the Resources folder. These can be

altered to better suit the tastes of the user, or replaced altogether. However, they must retain

the filenames of the original images. They must also be .PNG images, with a transparent

background, and a size of 50x50 pixels.

Changing the Background Colour of the PictureBoxes
In the RevertColour subroutine, which resides within the Board class, there are two lines

which can be altered to change the background colour of the PictureBoxes. They are as

follows:

Form1.Controls(Square).BackColor = Color.DimGray

Form1.Controls(Square).BackColor = Color.White

The "Color.DimGray" and "Color.White" can be changed to any of the wide range of colours

that Visual Basic provides.

The colour that the program uses to highlight valid moves can also be changed in a similar

fashion. The Highlight subroutine, which also resides in the Board class, contains the line:

Aman Gill 7276

42

Form1.Controls(str).BackColor = Color.Yellow

The "Color.Yellow" can also be changed to any colour that VB provides.

Progression from Design Stage and Problems during Implementation
The CheckValidMoves subroutine included in the Piece class was moved to each individual

child class. This was because the method could not access the Rules method included in the

child classes, as it was not a part of the parent class.

Many of the If statements used were replaced by Case statements where it was possible.

This reduces the amount of processing used, and helps to tidy the code and make it easy to

read.

Some Try and Catch statements were added for validation. These were added into the

StartClocks_Click and Promote subs so that an invalid conversion would not cause an error.

When this happens, the user is informed of that it is an invalid input and another input is

requested.

In the Timer_Tick handlers, the amount that the TimeStore variables are decreased by was

changed from 0.1 to WhiteTimer.Interval / 1000. This means that the interval can be

changed without affected the timing of the clocks; they will still go down in seconds.

Bugs
During implementation, I was constantly running the program to check if what I had done so

far worked. During the course of this, I encountered some bugs which I managed to fix by

looking through my code for the reason the bug occurred. I have documented these bugs

below

Problem: If the user selects their King when a Castle move is valid, the appropriate square

is highlighted in red. However, after this, whenever a piece is clicked, the same square is

highlighted in red again.

Reason: The variables used to mark a Castle move as valid remained true after the move

has been made.

Solution: Add a subroutine to mark all the Castle moves back to false after each move has

been made successfully.

Problem: Highlighted moves were appearing one space below where they should have.

Reason: Values in the array for any given square are one less than the values for the

Pictureboxes. This had been compensated for with the X values, when the NumberToLetter

function was used, but the Y values had not been corrected.

Aman Gill 7276

43

Solution: Incrementing the Y value from the array by one before using it to change the

background colour for the on-screen squares.

Problem: Pieces that could move multiple spaces diagonally (i.e. Bishop and Queen) could

move through other pieces.

Reason: The section in the CheckSpaces subroutine that validated diagonal moves was

missing a “Valid = False” statement

Solution: The “Valid = False” statement was added.

Problem: When the King was selected, and a Castle move was marked as valid, if that King

was deselected and another Piece was selected, the square for the valid Castle move was

marked in red again. Then, if that piece can move into the Castle square, and it is done so,

the Castle move is made instead of the intended one.

Reason: The Castle was only set to be false after a move had been made, and if a move

has not been made, it stayed valid.

Solution: FalsifySpecialMoves was moved to the “If PieceClick = True” section of

SquareClick.

Problem: When a pawn moved to the other side, the dialogue box for Pawn Promotion was

not appearing.

Reason: The 'Promotion = ""' statements were coming out as false, despite the variable

being set to "" earlier.

Solution: The statements were changed to 'Promotion = Nothing', which comes out as true.

Problem: After a pawn moved two spaces forward, if another piece moves to the space in

front of it or behind it, the pawn is captured.

Reason: The program believes it to be an En Passant capture.

Solution: a Chess.Grid(Form1.X1, Form1.Y1).Substring(1, 1) = "P" requirement statement

is added to En Passant captures, so that only pawns can perform this special move.

Aman Gill 7276

44

Testing

Outline Test Plan

Test Area Explanation

1 Check each piece’s

individual rules to see if

they are followed

correctly.

2 Check that general
rules are followed
correctly.

3 Check that each special

move is functional.

4 Check that the movelog

is recording moves

accurately, and the

save log function works.

5 Check that the timers,

buttons (apart from the

Save Log button),

labels and the timer

options are fully

functional.

Test Results

Test Area Test No. Description Expected Result Actual Result Referenc
e

1 1 Check Pawn
movement from initial
square.

Both squares in front are
highlighted as valid, if
unoccupied.

As expected. Fig. 1-1

1 2 Check Pawn
movement from non-
initial square.

Square in front is highlighted as
valid, if unoccupied

As expected. Fig. 1-2

1 3 Check Pawn attack. If a piece is directly in front of
the pawn, it is not a valid move.
If an enemy piece is diagonally
in front, it is a valid move.

As expected Fig. 1-3

Aman Gill 7276

45

1 4 Check Knight
movement.

Unoccupied squares that are
one square in the horizontal
direction and two squares in the
vertical direction away, and
vice-versa, are valid if
unoccupied. Unoccupied
squares that are blocked by
other pieces are valid also.
Enemy pieces are capturable,
friendly pieces are not.

As expected Fig. 1-4

1 5 Check Bishop
movement.

Unoccupied squares in any
diagonal direction are valid.
Enemy pieces are capturable,
friendly pieces are not.

As expected Fig. 1-5

1 6 Check Rook
movement.

Unoccupied squares in any
horizontal or vertical direction
are valid. Enemy pieces are
capturable, friendly pieces are
not.

As expected Fig. 1-6

1 7 Check Queen
movement.

Unoccupied squares in any
horizontal, vertical or diagonal
direction are valid. Enemy
pieces are capturable, friendly
pieces are not.

As expected Fig. 1-7

1 8 Check King
movement.

All unoccupied adjacent
squares are valid. Enemy
pieces are capturable, friendly
pieces are not.

As expected Fig. 1-8

2 1 Check that a piece
will not move if an
invalid move is
selected.

Pieces remain in their original
position, move indicator does
not change.

As expected Fig. 2-1a
Fig. 2-1b

2 2 Check that the turn
indicator changes.

When a valid move is made,
the turn indicator will change
from white turn to black turn or
vice-versa

As expected Fig. 2-2

2 3 Check that a player
cannot make a move
on the other player’s
turn.

When a white piece is selected
on the black player’s turn, or
vice-versa, there will be no
change.

As expected Fig. 2-3

2 4 Check that the check
for Check is
functioning correctly.

When a move is made that puts
the opponent’s King in check, a
“+” is added to the move
notation in the move log.

As expected Fig. 2-4

2 5 Check that the check
for checkmate is
functioning correctly.

When a move is made that
results in checkmate, a
dialogue box appears with the
text “Checkmate”.

As expected Fig. 2-5

3 1 Check that the White
King-side Castle is
functional.

If there are no pieces between
the King and Rook, and neither
the King nor the Rook have
moved, a red square will
appear two spaces towards the
Rook from the King. When this
is clicked, the King will move to
this square, and the rook will
move to the square on the
other side of the King.

As expected Fig. 3-1a
Fig. 3-1b

3 2 Check that the White If there are no pieces between As expected Fig. 3-2a

Aman Gill 7276

46

Queen-side Castle is
functional.

the King and Rook, and neither
the King nor the Rook have
moved, a red square will
appear two spaces towards the
Rook from the King. When this
is clicked, the King will move to
this square, and the rook will
move to the square on the
other side of the King.

Fig. 3-2b

3 3 Check that the Black
King-side Castle is
functional.

If there are no pieces between
the King and Rook, and neither
the King nor the Rook have
moved, a red square will
appear two spaces towards the
Rook from the King. When this
is clicked, the King will move to
this square, and the rook will
move to the square on the
other side of the King.

As expected Fig. 3-3a
Fig. 3-3b

3 4 Check that the Black
Queen-side Castle is
functional.

If there are no pieces between
the King and Rook, and neither
the King nor the Rook have
moved, a red square will
appear two spaces towards the
Rook from the King. When this
is clicked, the King will move to
this square, and the rook will
move to the square on the
other side of the King.

As expected Fig. 3-4a
Fig. 3-4b

3 5 Check that Pawn
Promotion is
functional.

When a pawn is moved to a
square in the last row on the
opposite side of the board, an
input box appears requesting
an input for what type of piece
to promote the pawn to. Once
this has been done
successfully, the image of the
pawn should change to the type
of piece that the user selected.
The rules of that piece also
become that of the type of
piece the user has selected.

As expected Fig. 3-5a
Fig. 3-5b

3 6 Check that the input
box for Pawn
Promotion functions
correctly.

The user should be able to
input “q”, “r”, “n” or “b” to pick
which piece they would like the
pawn to be promoted to. If the
user inputs anything other than
one of these letters, the
program will request a valid
input.

As expected Fig. 3-6a
Fig. 3-6b
Fig. 3-5a
Fig. 3-5b

3 7 Check that En
Passant is functional.

When a pawn moves forward
two spaces from its starting
position, and an enemy pawn is
at a position where it could
capture that piece if it had
moved a single square forward,
that enemy pawn should be
able to capture the pawn that
moved.

As expected Fig. 3-7a
Fig. 3-7b
Fig. 3-7c

4 1 Check normal
movement without
capture writes
correctly.

The notation should be the a
character denoting which type
of piece moved, and then the
coordinate position of the
destination square.

As expected Fig. 4-1

4 2 Check capture The notation should be the
same as 4.1, with an added “x”

As expected Fig. 4-2

Aman Gill 7276

47

movement writes
correctly.

after the letter denoting the
piece.

4 3 Check castle
movement writes
correctly.

For king-side castles, the
notation should be “O-O”, and
for queen-side castles it should
be “O-O-O”

As expected Fig. 4-3

4 4 Check Pawn
Promotion writes
correctly.

The notation should be the
same as 4.1, but with an added
“=” as well as a character
denoting the type of piece the
pawn promoted to.

As expected Fig. 3-5b

4 5 Check Check writes
correctly.

For a move that puts the enemy
king in check (but not
checkmate), a “+” is added to
the end to whatever move was
made.

As expected Fig. 2-4

4 6 Check Checkmate
writes correctly.

A “#” should be added to the
end of whatever move was
made.

As expected Fig. 4-6

4 7 Check that the Save
Log function works
correctly.

A filename will be requested
from the user after the Save
Log button is pressed. Once a
filename has been given, a text
file containing the log will be
created in the C Drive root
directory.

As expected. Fig. 4-7a
Fig. 4-7b

5 1 Check “Normal
Clock” setting of
timers functions
correctly.

The number in the textbox,
entered by the user, is the
amount of minutes each player
has. The timer for a given
player will be active when it is
that players turn, and will stop
when it is the other player’s
turn. When a timer runs out, a
message will appear saying
“Player X has run out of time!”.
If an invalid input is put into the
textbox, a message will appear
to inform the user of this.

As expected Fig. 5-1a
Fig. 5-1b
Fig. 5-1c
Fig. 5-1d
Fig. 5-1e

5 2 Check “Speed
Chess” setting of
timers functions
correctly.

The number in the textbox,
entered by the user, is the
number of seconds each player
has to make each move. When
a move is made, the timer
resets to whatever the input is.
When a timer runs out, a
message will appear saying
“Player X has run out of time!”.
If an invalid input is put into the
textbox, a message will appear
to inform the user of this.

As expected Fig. 5-2a
Fig. 5-2b
Fig. 5-2c
Fig. 5-2d
Fig. 5-2e

5 3 Check “Pause” button
functions correctly.

When the button is pressed,
whichever timer is running will
stop, and when the button is
pressed again, that timer will
start.

As expected Fig. 5-3a
Fig. 5-3b

5 4 Check “Reset Board”
button functions
correctly.

All pieces return to their original
position, the Move Log is
cleared, the turn indicator
switches to White Turn if it was
Black Turn, the timer options
switch to Clocks Off.

As expected Fig. 5-4a
Fig. 5-4b

Aman Gill 7276

48

Test Appendix

Fig. 1-1
Pawn movement from the initial square.

Fig. 1-2
Pawn movement from non-initial square

Aman Gill 7276

49

Fig. 1-3
Pawn Attack

Fig. 1-4
Knight movement

Aman Gill 7276

50

Fig. 1-5
Bishop movement

Fig. 1-6
Rook movement

Aman Gill 7276

51

Fig. 1-7
Queen movement

Fig. 1-8
 King movement

Aman Gill 7276

52

Fig. 2-1a
Before selecting an invalid move.

Fig. 2-1b
After selecting an invalid move.

Aman Gill 7276

53

Fig. 2-2
Turn indicator changes to black turn after white player has made a move.

Fig. 2-3

After clicking on a Black piece on White player’s turn.

Aman Gill 7276

54

Fig. 2-4
King has been put into check, the move that did so has a “+” added to the end in the Move Log.

Fig. 2-5
Black player has been put into checkmate; a message box appears informing the players of this.

Aman Gill 7276

55

Fig. 3-1a
King has been clicked while castle is valid, shows the castle move as a red square.

Fig. 3-1b
Castle move has been selected, King moves to the square that was highlighted in red, the castle
moves to the other side of the King.

Aman Gill 7276

56

Fig. 3-2a
King has been clicked while castle is valid, shows the castle move as a red square.

Fig. 3-2b
Castle move has been selected, King moves to the square that was highlighted in red, the castle
moves to the other side of the King.

Aman Gill 7276

57

Fig. 3-3a
King has been clicked while castle is valid, shows the castle move as a red square.

Fig. 3-3b
Castle move has been selected, King moves to the square that was highlighted in red, the castle

moves to the other side of the King.

Aman Gill 7276

58

Fig. 3-4a
King has been clicked while castle is valid, shows the castle move as a red square.

Fig. 3-4b
Castle move has been selected, King moves to the square that was highlighted in red, the castle
moves to the other side of the King.

Aman Gill 7276

59

Fig. 3-5a
When a pawn reaches the other side of the board, this dialogue box appears. The user inputs which
piece they want to promote to. Here a ‘Q’ is input.

Fig. 3-5b

The pawn has been promoted to a Queen.

Aman Gill 7276

60

Fig. 3-6a
The user is attempting to input an invalid input into the inputbox.

Fig. 3-6b

The program rejects the invalid input and requests a valid one.

Aman Gill 7276

61

Fig. 3-7a
Shows a pawn moving two spaces forward from its starting position.

Fig. 3-7b
The white pawn can now take the piece that just moved forward two spaces with an En Passant
capture.

Aman Gill 7276

62

Fig. 3-7c
The black pawn has been taken by the white one by En Passant.

Fig. 4-1
Normal movement of a piece. The correct chess notation has been written in the Move Log.

Aman Gill 7276

63

Fig. 4-2
Capture move has just been made. The correct chess notation has been written in the Move Log. An
“x” is shown after the “P”, which denotes a capture.

Fig. 4-3
A castle move has been made. The correct chess notation has been written in the Move Log.

Aman Gill 7276

64

Fig. 4-6
A checkmate move has been made. A “#” has been added to the end of the move notation.

Fig 4-7a

Aman Gill 7276

65

Fig. 4-7b
Text file containing the log saved from the program.

Fig. 5-1a
Normal clock has been selected, a time of 2 minutes has been selected. Start Clocks has been
clicked, White Time is now counting down from 2:00.

Aman Gill 7276

66

Fig. 5-1b
White player has made a move. The White timer has been paused, the Black timer is now running.

Fig. 5-1c
Black player has made a move; black timer is paused and white timer is running again, resuming
from the time it was left with from last turn.

Aman Gill 7276

67

Fig. 5-1d
White player has run out of time, a message displays informing the users of this.

Fig. 5-1e
The user has attempted to input an invalid input into the textbox. When the Start Clocks button is
pressed, the program rejects the input and informs the user that it is invalid.

Aman Gill 7276

68

Fig. 5-2a
Speed Chess setting has been selected. A time of 10 seconds has been input. Start Clocks has been
pressed. White timer is now counting down from 10 seconds.

Fig. 5-2b
White player has made a move; white timer has stopped and black timer is now counting down from
10 seconds.

Aman Gill 7276

69

Fig. 5-2c
Black player has made a move; white timer is reset to 10 seconds again, and is now counting down.

Fig. 5-2d
White player has run out of time, and a message box appears to inform the user of this.

Aman Gill 7276

70

Fig. 5-2e
The user has attempted to input an invalid input into the textbox. When the Start Clocks button is
pressed, the program rejects the input and informs the user that it is invalid.

Fig. 5-3a
The user has selected 2 minutes for the input. Start Clocks has been clicked, and then Pause was
clicked 1 second later, and the program was left for 10 seconds before a screenshot was taken. The
time here is still paused at 1:59.

Aman Gill 7276

71

Fig. 5-3b
The Pause button is clicked once again, and the program is left for 5 seconds before a screenshot is
taken. As can be seen, the timer has started, and has counted down another 5 seconds from when it
was paused.

Fig. 5-4a
Showing a game in progress.

Aman Gill 7276

72

Fig. 5-4b
After the Reset Board button has been pressed.

Aman Gill 7276

73

Appraisal

System Objectives

There must be a visual interactive 2-D grid, which shows the position of the

pieces, and allows the player to make moves by clicking on them.

Objective met.

As can be seen from the Interface Design section, the chosen design includes such a grid.

The screenshots taken for test areas 1, 2 and 3, which are included in the appendix, show

that the grid displays the positions of the pieces at any given point in the game, and they

also show that the result of clicking on a square is a set of possible moves; one of these can

be clicked to make a move.

When a piece is clicked, all possible moves should be highlighted on the

board.

Objective met.

As can also be seen by the screenshots taken for test areas 1, 2 and 3, which are included

in the appendix, the click of a square which contains a piece results in all possible moves

being highlighted on the board.

The program must obey the standard rules of chess, and must not allow

players to disobey these rules.

Objective met.

In the Testing section, test areas 1, 2 and 3 test whether the program follows all the rules of

chess correctly. The results of these tests were all as expected, so the program does not

allow players to disobey the rules of chess.

If a player inputs an invalid move, the pieces will stay in the same position on

the board.

Objective met.

As shown by test 2.1 in the testing section, if an invalid move in input, the pieces do stay in

the same position.

The program must include the special rules of Castling, En Passant and Pawn

Promotion.

Objective met.

Aman Gill 7276

74

As shown by test area 3 in the testing section, these special moves are included and they all

function properly.

There should be a log of all the moves made in the game, with an option to

save the log to a text file.

Objective met.

As can be seen by the final interface design, there is a textbox that is used as a move log,

and a button labelled “Save Log” which is used to save the log to a text file. Test area 6 in

the testing section shows that these are fully functional.

The program must include checks for whether a player is in check or

checkmate, and notify the user when either of these happen.

Objective met.

As shown by test 2.4, when a player is in check the move that puts that player in check has

an exclamation mark following it, indicating a check move. As shown by test 2.5, when a

move is played that puts a player into checkmate, a dialogue box appears notifying the

players that checkmate has been made.

There must be a reset button to return the board to its starting state.

Objective met.

As can be seen by the final interface design, there is a button labelled “Reset Board”. As

shown by test 5.4, this button will return the board to its starting state.

There should be an indicator to show whose turn it is.

Objective met.

The final interface design shows that there is a turn indicator and test 2.2 shows this

indicator to be fully functional.

The grid spaces on the chess board should be numbered on the vertical axis,

and lettered on the horizontal axis.

Objective met.

As can be seen from the final interface design, the grid spaces are labelled exactly as the

objective states.

The program must incorporate a chess clock, giving each player a certain

amount of time to make their moves.

Objective met.

Aman Gill 7276

75

As can be seen by test area 5, the chess clocks are implemented and fully functional.

The program should include a pause button, which will stop the clocks to allow

the players to have a break.

Objective met.

As can be seen by the final interface design, there is a Pause button included, and as shown

by test 5.3, this button is fully functional.

There must be an option to decide whether the game will be timed, and if so

how much time each player will have, as well as how the game will be timed.

Objective met.

As can be seen by the final interface design there are timer options included, and as shown

by tests 5.1 and 5.2, these options are fully functional.

Analysis of Feedback

The following is a report on my project by my end user, Mr RG Patten.

Aman has been constructing a chess program: not the Herculean task of making the computer
actually play the game, but a teaching aid to display and record the moves. He has made the
graphics work very successfully, with a clear board diagram in standard chess figurines, all
possible moves being highlighted when a piece is clicked, and move entry by drag and drop
working very conveniently. This will make the program particularly amenable to SmartBoard
use. The moves also appear as a scrollable move list on the right of the chessboard diagram,
which is valuable both for working back and forward through a game, and for familiarising
pupils with the correct chess notation.

The project was very near to completion when I last saw it, and looked set to be a very
worthwhile piece of software. The task of encoding the rules of chess, to teach the machine to
distinguish between legal and illegal moves, is quite complicated but he has accomplished it
nicely. I am looking forward to using this with junior members of the Chess Club.

R.G. Patten,
Deputy Director of Studies (Timetable),
King Edward VI School,
Kellett Road,
Southampton
SO15 5UQ

Overall, the feedback from Mr Patten is very positive. He noted that the graphics work very

well, and everything is clearly presented. He also notes that the way in which pieces are

moved will work very well with the SmartBoard. The SmartBoard is an interactive whiteboard

Aman Gill 7276

76

that effectively replicates a touchscreen control. This will mean that users can tap the pieces

that they want to move on-screen, instead of having to share a mouse in order to play.

Mr Patten also comments on the usefulness of the Move Log, as it allows the players to

review the game, and for teaching pupils chess notation. He then writes that he is very

pleased with the program.

Potential Improvements

A function could be added to replay through previous games. The program could load the

text files with chess notation that have been saved by the user, and the user will be able to

review the entire game easily with a graphical representation. This would be great for

educational purposes, to show the members of the chess club where they have gone wrong

in a game, and how they can improve. Several buttons will have the be added; one to load a

Move Log text file, one to move on to the next move in the replay, and possibly also one to

go backwards.

Another useful addition to the program would be a function to detect Stalemate. Stalemate is

when a player is not in Checkmate, but cannot make any valid moves. Currently, the system

will not tell the user if Stalemate has been reached; the users will have to figure this out by

themselves by clicking on their available pieces.

A very useful addition would be to add an artificial intelligence to play against a single user.

This would allow the user to practice or to play for fun without having to find a human

opponent to play with. This would involve a large amount of knowledge about playing

patterns and techniques when playing chess, and would be a very difficult task to complete.

The intended users of this program, however, are the members of the chess club, and at

chess club there will be no shortage of human players to play against. As such, this feature

of the program might not be taken advantage of by the users.

Aman Gill 7276

77

User Manual

Installation
Insert the flash drive or other device with the published software on it. Navigate to the folder

where the software has been placed, and double-click on the “setup” file. You will then be

shown the following message:

Click Install, and the software will install. The application should automatically open at this

point, and can now be accessed at any time via:

Start > All Programs > Chess > Chess.exe

Basic Playing
This manual assumes the user has at least a basic grasp on how to play the game of Chess.

Moving Pieces
If you click any piece (assuming it is the correct colour of piece for which turn it is), all valid

moves for that piece will be highlighted on-screen, like so:

Aman Gill 7276

78

As can be seen from the picture above, the piece that is selected is highlighted in green,

while any valid moves are highlighted in yellow.

If one of these valid moves is selected, the piece will move to that position, and the turn

indicator will change.

Castling
Castling works very similarly to normal moves. In order to perform a Castle move, you must

select the King while a Castle is available.

Aman Gill 7276

79

You can see here that a square is highlighted in red. If you click this square, the Castle will

be performed.

Pawn Promotion
When a pawn is moved to the other side of the board, an dialogue box will appear

requesting an input.

Aman Gill 7276

80

The input it requests is for which piece you want the pawn to be promoted to. The options

are “Q” for a Queen, “N” for a Knight, “R” for a Rook or “B” for a Bishop. Lowercase letters

are accepted. If an invalid input is put into the textbox, the application will request a valid

input.

Once a valid input has been given, the pawn will be replaced with the piece that was

requested, like so:

Aman Gill 7276

81

When is it Check or Checkmate?
When a move puts a King into Check, the only indication is an added “+” to the end of the

move in the Move Log.

However, when Checkmate has been reached, a message box appears on-screen, like so:

Resetting the Board
To reset the board at any point in the game, simply click the “Reset Board” button, and the

board will return to its starting state. All the pieces will be in their starting positions, and the

Move Log will be cleared.

Aman Gill 7276

82

Using the Clocks
As default, the clocks are off. This can be seen in the Timer Options section, at the bottom-

right of the application:

As can be seen here, there are two options for the clocks; Normal

Clock and Speed Chess.

Normal Clock
When the Normal Clock option is selected, the textbox underneath it becomes available for

input. The amount of time in minutes that each player will have should be input into this box.

After that has been done, the “Start Clocks” button should be pressed, which will start the

timer under “White Time”. The program will start counting down from however many minutes

were input into the textbox. When a player makes a move, their timer will pause, and the

opponent’s timer will start. When a player runs out of time on their clock, a message will

appear, like so:

Speed Chess
When the Speed Chess option is selected, the textbox underneath it becomes available for

input. In this case, the number input into the textbox will correspond to an amount of time in

seconds for each player. When the Start Clocks button is clicked, the timer under “White

Time” will start counting down from however many seconds were input into the textbox.

When a player makes a move, their timer will stop, and the next player’s will start from

however many seconds were input into the textbox. At the start of each player’s turn, their

Aman Gill 7276

83

timer will be reset to the amount of seconds input into the Speed Chess textbox. When a

player runs out of time, a message will appear informing the players of this, the same as with

the Normal Clock setting.

Saving the Move Log
Saving the Move Log to a text file is a very simple process. Simply click the “Save Log”

button, and then type in a name for your log in the inputbox that appears, like so:

Click “OK”, then your log will be saved to the root C Drive directory, under C:*Filename*.txt,

with the *Filename* being replaced by whatever was input in the textbox. In the instance

shown above, it will be C:\Log1.txt.

Aman Gill 7276

84

Appendix

Full Program Listing

Main Form
Public Class Chess
 Public Grid(7, 7) As String 'Keeps a store of which piece is in which square
 Public ValidCheck(7, 7) As Boolean 'Used when checking valid moves; any squares
that are the destination of valid moves are marked as true, while any other squares
are marked as false
 Public PieceClick As Boolean = False 'Used to check whether a square has been
clicked
 Public X1, Y1 As Integer 'Used to indicate the coordinates of the initial square
 Public Game1 As Game = New Game 'Creates Game object
 Public CastleWQMoved, CastleWKMoved, CastleBQMoved, CastleBKMoved As Boolean 'Used
to indicate whether either of the pieces in a particular castle move have moved.
 Public CastleWQ, CastleWK, CastleBQ, CastleBK As Boolean 'Used to indicate whether
a particular Castling move is valid
 Public WhiteTimeStore, BlackTimeStore As Double 'Stores for how much time each
player has left
 Public EnPassant As Boolean 'Whether a pawn has moved forward two spaces last turn
 Public EPPosX, EPPosY As Integer 'The destination position of the pawn to move
forward two spaces
 Dim WhitePaused As Boolean 'Used when the clocks are paused to store which clock
was running at the time
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Game1.InitializeGame()
 End Sub

 Private Sub A1_Click(sender As Object, e As EventArgs) Handles A1.Click
 Game1.SquareClick(0, 0)
 End Sub

 Private Sub A2_Click(sender As Object, e As EventArgs) Handles A2.Click
 Game1.SquareClick(0, 1)
 End Sub

 Private Sub A3_Click(sender As Object, e As EventArgs) Handles A3.Click
 Game1.SquareClick(0, 2)
 End Sub

 Private Sub A4_Click(sender As Object, e As EventArgs) Handles A4.Click
 Game1.SquareClick(0, 3)
 End Sub

 Private Sub A5_Click(sender As Object, e As EventArgs) Handles A5.Click
 Game1.SquareClick(0, 4)
 End Sub

 Private Sub A6_Click(sender As Object, e As EventArgs) Handles A6.Click
 Game1.SquareClick(0, 5)
 End Sub

 Private Sub A7_Click(sender As Object, e As EventArgs) Handles A7.Click
 Game1.SquareClick(0, 6)
 End Sub

Aman Gill 7276

85

 Private Sub A8_Click(sender As Object, e As EventArgs) Handles A8.Click
 Game1.SquareClick(0, 7)
 End Sub

 Private Sub B1_Click(sender As Object, e As EventArgs) Handles B1.Click
 Game1.SquareClick(1, 0)
 End Sub

 Private Sub B2_Click(sender As Object, e As EventArgs) Handles B2.Click
 Game1.SquareClick(1, 1)
 End Sub

 Private Sub B3_Click(sender As Object, e As EventArgs) Handles B3.Click
 Game1.SquareClick(1, 2)
 End Sub

 Private Sub B4_Click(sender As Object, e As EventArgs) Handles B4.Click
 Game1.SquareClick(1, 3)
 End Sub

 Private Sub B5_Click(sender As Object, e As EventArgs) Handles B5.Click
 Game1.SquareClick(1, 4)
 End Sub

 Private Sub B6_Click(sender As Object, e As EventArgs) Handles B6.Click
 Game1.SquareClick(1, 5)
 End Sub

 Private Sub B7_Click(sender As Object, e As EventArgs) Handles B7.Click
 Game1.SquareClick(1, 6)
 End Sub

 Private Sub B8_Click(sender As Object, e As EventArgs) Handles B8.Click
 Game1.SquareClick(1, 7)
 End Sub

 Private Sub C1_Click(sender As Object, e As EventArgs) Handles C1.Click
 Game1.SquareClick(2, 0)
 End Sub

 Private Sub C2_Click(sender As Object, e As EventArgs) Handles C2.Click
 Game1.SquareClick(2, 1)
 End Sub

 Private Sub C3_Click(sender As Object, e As EventArgs) Handles C3.Click
 Game1.SquareClick(2, 2)
 End Sub

 Private Sub C4_Click(sender As Object, e As EventArgs) Handles C4.Click
 Game1.SquareClick(2, 3)
 End Sub

 Private Sub C5_Click(sender As Object, e As EventArgs) Handles C5.Click
 Game1.SquareClick(2, 4)
 End Sub

 Private Sub C6_Click(sender As Object, e As EventArgs) Handles C6.Click
 Game1.SquareClick(2, 5)
 End Sub

 Private Sub C7_Click(sender As Object, e As EventArgs) Handles C7.Click
 Game1.SquareClick(2, 6)

Aman Gill 7276

86

 End Sub

 Private Sub C8_Click(sender As Object, e As EventArgs) Handles C8.Click
 Game1.SquareClick(2, 7)
 End Sub

 Private Sub D1_Click(sender As Object, e As EventArgs) Handles D1.Click
 Game1.SquareClick(3, 0)
 End Sub

 Private Sub D2_Click(sender As Object, e As EventArgs) Handles D2.Click
 Game1.SquareClick(3, 1)
 End Sub

 Private Sub D3_Click(sender As Object, e As EventArgs) Handles D3.Click
 Game1.SquareClick(3, 2)
 End Sub

 Private Sub D4_Click(sender As Object, e As EventArgs) Handles D4.Click
 Game1.SquareClick(3, 3)
 End Sub

 Private Sub D5_Click(sender As Object, e As EventArgs) Handles D5.Click
 Game1.SquareClick(3, 4)
 End Sub

 Private Sub D6_Click(sender As Object, e As EventArgs) Handles D6.Click
 Game1.SquareClick(3, 5)
 End Sub

 Private Sub D7_Click(sender As Object, e As EventArgs) Handles D7.Click
 Game1.SquareClick(3, 6)
 End Sub

 Private Sub D8_Click(sender As Object, e As EventArgs) Handles D8.Click
 Game1.SquareClick(3, 7)
 End Sub

 Private Sub E1_Click(sender As Object, e As EventArgs) Handles E1.Click
 Game1.SquareClick(4, 0)
 End Sub

 Private Sub E2_Click(sender As Object, e As EventArgs) Handles E2.Click
 Game1.SquareClick(4, 1)
 End Sub

 Private Sub E3_Click(sender As Object, e As EventArgs) Handles E3.Click
 Game1.SquareClick(4, 2)
 End Sub

 Private Sub E4_Click(sender As Object, e As EventArgs) Handles E4.Click
 Game1.SquareClick(4, 3)
 End Sub

 Private Sub E5_Click(sender As Object, e As EventArgs) Handles E5.Click
 Game1.SquareClick(4, 4)
 End Sub

 Private Sub E6_Click(sender As Object, e As EventArgs) Handles E6.Click
 Game1.SquareClick(4, 5)
 End Sub

Aman Gill 7276

87

 Private Sub E7_Click(sender As Object, e As EventArgs) Handles E7.Click
 Game1.SquareClick(4, 6)
 End Sub

 Private Sub E8_Click(sender As Object, e As EventArgs) Handles E8.Click
 Game1.SquareClick(4, 7)
 End Sub

 Private Sub F1_Click(sender As Object, e As EventArgs) Handles F1.Click
 Game1.SquareClick(5, 0)
 End Sub

 Private Sub F2_Click(sender As Object, e As EventArgs) Handles F2.Click
 Game1.SquareClick(5, 1)
 End Sub

 Private Sub F3_Click(sender As Object, e As EventArgs) Handles F3.Click
 Game1.SquareClick(5, 2)
 End Sub

 Private Sub F4_Click(sender As Object, e As EventArgs) Handles F4.Click
 Game1.SquareClick(5, 3)
 End Sub

 Private Sub F5_Click(sender As Object, e As EventArgs) Handles F5.Click
 Game1.SquareClick(5, 4)
 End Sub

 Private Sub F6_Click(sender As Object, e As EventArgs) Handles F6.Click
 Game1.SquareClick(5, 5)
 End Sub

 Private Sub F7_Click(sender As Object, e As EventArgs) Handles F7.Click
 Game1.SquareClick(5, 6)
 End Sub

 Private Sub F8_Click(sender As Object, e As EventArgs) Handles F8.Click
 Game1.SquareClick(5, 7)
 End Sub

 Private Sub G1_Click(sender As Object, e As EventArgs) Handles G1.Click
 Game1.SquareClick(6, 0)
 End Sub

 Private Sub G2_Click(sender As Object, e As EventArgs) Handles G2.Click
 Game1.SquareClick(6, 1)
 End Sub

 Private Sub G3_Click(sender As Object, e As EventArgs) Handles G3.Click
 Game1.SquareClick(6, 2)
 End Sub

 Private Sub G4_Click(sender As Object, e As EventArgs) Handles G4.Click
 Game1.SquareClick(6, 3)
 End Sub

 Private Sub G5_Click(sender As Object, e As EventArgs) Handles G5.Click
 Game1.SquareClick(6, 4)
 End Sub

 Private Sub G6_Click(sender As Object, e As EventArgs) Handles G6.Click
 Game1.SquareClick(6, 5)

Aman Gill 7276

88

 End Sub

 Private Sub G7_Click(sender As Object, e As EventArgs) Handles G7.Click
 Game1.SquareClick(6, 6)
 End Sub

 Private Sub G8_Click(sender As Object, e As EventArgs) Handles G8.Click
 Game1.SquareClick(6, 7)
 End Sub

 Private Sub H1_Click(sender As Object, e As EventArgs) Handles H1.Click
 Game1.SquareClick(7, 0)
 End Sub

 Private Sub H2_Click(sender As Object, e As EventArgs) Handles H2.Click
 Game1.SquareClick(7, 1)
 End Sub

 Private Sub H3_Click(sender As Object, e As EventArgs) Handles H3.Click
 Game1.SquareClick(7, 2)
 End Sub

 Private Sub H4_Click(sender As Object, e As EventArgs) Handles H4.Click
 Game1.SquareClick(7, 3)
 End Sub

 Private Sub H5_Click(sender As Object, e As EventArgs) Handles H5.Click
 Game1.SquareClick(7, 4)
 End Sub

 Private Sub H6_Click(sender As Object, e As EventArgs) Handles H6.Click
 Game1.SquareClick(7, 5)
 End Sub

 Private Sub H7_Click(sender As Object, e As EventArgs) Handles H7.Click
 Game1.SquareClick(7, 6)
 End Sub

 Private Sub H8_Click(sender As Object, e As EventArgs) Handles H8.Click
 Game1.SquareClick(7, 7)
 End Sub

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ResetButton.Click
 Game1.InitializeGame()
 WhiteTimer.Stop()
 BlackTimer.Stop()
 End Sub

 Private Sub SaveLog_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SaveLog.Click
 'Takes input from user and uses that as a filename
 'then writes the contents of the Move Log into a file with that name on the C
root directory
 Dim FilePath1 As String = "C:\"
 Dim FilePath2 As String = InputBox("Name your log file")
 Dim FilePath3 As String = ".txt"
 Dim FilePath As String = FilePath1 + FilePath2 + FilePath3
 Dim Objwriter As New System.IO.StreamWriter(FilePath, True)
 Objwriter.Write(MoveLog.Text)
 Objwriter.Close()
 End Sub

Aman Gill 7276

89

 Private Sub ClockOff_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClockOff.CheckedChanged
 'The input textboxes for a given setting are only set to True if the
corresponding checkbox is checked
 NormalClockInput.Enabled = False
 SpeedChessInput.Enabled = False
 End Sub

 Private Sub NormalClock_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles NormalClock.CheckedChanged
 NormalClockInput.Enabled = True
 SpeedChessInput.Enabled = False
 End Sub

 Private Sub SpeedChess_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SpeedChess.CheckedChanged
 NormalClockInput.Enabled = False
 SpeedChessInput.Enabled = True
 End Sub

 Private Sub StartClocks_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StartClocks.Click
 If NormalClock.Checked = True Then
 'Takes the NormalClockInput and converts it into the number of minutes for
each player
 'then starts the white timer
 Try
 WhiteTimeStore = NormalClockInput.Text * 60
 BlackTimeStore = NormalClockInput.Text * 60
 WhiteTimer.Start()
 Catch
 MsgBox("An invalid value has been input into the Normal Clock
textbox.")
 End Try
 ElseIf SpeedChess.Checked = True Then
 'Takes the input as the number of seconds for each player each turn
 Try
 WhiteTimeStore = SpeedChessInput.Text
 BlackTimeStore = SpeedChessInput.Text
 WhiteTimer.Start()
 Catch
 MsgBox("An invalid value has been input into the Speed Chess
textbox.")
 End Try
 End If
 End Sub

 Private Sub WhiteTimer_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles WhiteTimer.Tick
 'Every second, a value of 1 is taken from the WhiteTimeStore
 WhiteTimeStore = WhiteTimeStore - (WhiteTimer.Interval / 1000)
 'This formats the value of WhiteTimeStore into Minutes:Seconds and writes that
to WhiteTime
 WhiteTime.Text = Format(Math.Floor(WhiteTimeStore / 60), "00") & ":" &
Format(WhiteTimeStore Mod 60, "00")
 'If the timer goes below zero, the players are informed that one of them has
run out of time
 If WhiteTimeStore < 0 Then
 WhiteTimer.Stop()
 MsgBox("Player White has run out of time!")
 End If

Aman Gill 7276

90

 End Sub

 Private Sub BlackTimer_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BlackTimer.Tick
 'Same here as WhiteTimer_Tick
 BlackTimeStore = BlackTimeStore - (BlackTimer.Interval / 1000)
 BlackTime.Text = Format(Math.Floor(BlackTimeStore / 60), "00") & ":" &
Format(BlackTimeStore Mod 60, "00")
 If BlackTimeStore < 0 Then
 BlackTimer.Stop()
 MsgBox("Player Black has run out of time!")
 End If
 End Sub

 Private Sub Pause_Click(sender As Object, e As EventArgs) Handles Pause.Click
 'Stops whichever clock is running, and stores which clock was running
 If ClockOff.Checked = False Then
 If WhiteTimer.Enabled = True Then
 WhiteTimer.Stop()
 WhitePaused = True
 ElseIf BlackTimer.Enabled = True Then
 BlackTimer.Stop()
 WhitePaused = False
 Else
 'When the button is clicked again, the timer that was running before
starts
 If WhitePaused = True Then
 WhiteTimer.Start()
 Else
 BlackTimer.Start()
 End If
 End If
 End If
 End Sub
End Class

Game Class
Public Class Game
 Public Board1 As Board = New Board
 Public WPawn1 As Pawn = New Pawn
 Public WPawn2 As Pawn = New Pawn
 Public WPawn3 As Pawn = New Pawn
 Public WPawn4 As Pawn = New Pawn
 Public WPawn5 As Pawn = New Pawn
 Public WPawn6 As Pawn = New Pawn
 Public WPawn7 As Pawn = New Pawn
 Public WPawn8 As Pawn = New Pawn
 Public BPawn1 As Pawn = New Pawn
 Public BPawn2 As Pawn = New Pawn
 Public BPawn3 As Pawn = New Pawn
 Public BPawn4 As Pawn = New Pawn
 Public BPawn5 As Pawn = New Pawn
 Public BPawn6 As Pawn = New Pawn
 Public BPawn7 As Pawn = New Pawn
 Public BPawn8 As Pawn = New Pawn
 Public WBishop1 As Bishop = New Bishop
 Public WBishop2 As Bishop = New Bishop
 Public BBishop1 As Bishop = New Bishop
 Public BBishop2 As Bishop = New Bishop
 Public WKnight1 As Knight = New Knight

Aman Gill 7276

91

 Public WKnight2 As Knight = New Knight
 Public BKnight1 As Knight = New Knight
 Public BKnight2 As Knight = New Knight
 Public WRook1 As Rook = New Rook
 Public WRook2 As Rook = New Rook
 Public BRook1 As Rook = New Rook
 Public BRook2 As Rook = New Rook
 Public WKing As King = New King
 Public BKing As King = New King
 Public WQueen As Queen = New Queen
 Public BQueen As Queen = New Queen
 Dim WhiteTurn As Boolean = True 'Indicates whose turn it is; True indicates White
Turn, False therefore indicates Black Turn
 Dim SpecialMove As String 'Indicates whether a special move has been made, and if
so specifically which one
 Dim TurnCount As Integer = 0 'A counter for how many turns have gone through in
the current game
 Public Sub SquareClick(ByVal X As Integer, ByVal Y As Integer) 'This subroutine
handles the pictureboxes being clicked.
 'All event handlers call this sub, with their unique coordinates as the
parameters.
 If Chess.PieceClick = False Then 'If a piece has not already been selected
 If Chess.Grid(X, Y) <> "" Then 'the square is checked to see if there is a
piece in it or not.
 CheckTurn(X, Y) 'If there is, this subroutine is called.
 End If
 Else
 If Chess.ValidCheck(X, Y) = True Then 'If a piece has already been clicked,
and the square now being clicked
 MovePiece(X, Y) 'has been listed as a valid move, the piece will be
moved,
 ChangeTurn() 'and the turn will be changed.
 End If
 Board1.RevertColour() 'Whether a move is made or not, the colour of the
squares are returned to their
 Chess.PieceClick = False 'original colours, PieceClick is set to false,
allowing a new move to be made.
 FalsifySpecialMoves() 'Any special moves that have been marked as true are
set to false.
 End If
 Chess.StartClocks.Enabled = False
 End Sub
 Private Sub CheckTurn(ByVal X As Integer, ByVal Y As Integer) 'A list of valid
moves will only be made if the piece on
 'the square being clicked matches the current turn. This subroutines checks
that.
 Select Case WhiteTurn
 Case True
 If Chess.Grid(X, Y).StartsWith("W") = True Then 'The colour of the
piece is checked by looking at the
 CallRules(X, Y) 'first letter of the Grid value in that square. If
it matches, the list of valid moves
 Call Board1.DisplayValidMoves() 'will be compiled, and then
displayed on the screen
 Chess.PieceClick = True
 End If
 Case False
 If Chess.Grid(X, Y).StartsWith("B") = True Then
 CallRules(X, Y)
 Call Board1.DisplayValidMoves()
 Chess.PieceClick = True
 End If

Aman Gill 7276

92

 End Select
 End Sub
 Private Sub ChangeTurn() 'Simply changes the turn from White to Black or vice-
versa
 Select Case WhiteTurn
 Case True
 WhiteTurn = False 'Switches the indicator based on the current turn
 Chess.TurnIndicator.Text = "Black Turn" 'This is to indicate on the
board whose turn it is
 If Chess.NormalClock.Checked = True Then
 Chess.WhiteTimer.Stop()
 Chess.BlackTimer.Start()
 ElseIf Chess.SpeedChess.Checked = True Then
 Chess.BlackTimeStore = Chess.SpeedChessInput.Text
 Chess.WhiteTimer.Stop()
 Chess.BlackTimer.Start()
 End If
 Case False
 WhiteTurn = True
 Chess.TurnIndicator.Text = "White Turn"
 If Chess.NormalClock.Checked = True Then
 Chess.BlackTimer.Stop()
 Chess.WhiteTimer.Start()
 ElseIf Chess.SpeedChess.Checked = True Then
 Chess.WhiteTimeStore = Chess.SpeedChessInput.Text
 Chess.BlackTimer.Stop()
 Chess.WhiteTimer.Start()
 End If
 End Select
 End Sub
 Public Sub InitializeGame() 'Used to bring the game's state to its initial state
 Board1.RevertColour()
 InitializePieces()
 InitializeVariables()
 Chess.MoveLog.Text = "" 'Clears the Movelog
 Board1.ResetPiecePositions()
 Chess.ClockOff.Checked = True
 Chess.StartClocks.Enabled = True
 End Sub
 Private Sub InitializePieces() 'This sub sets all the properties of each Piece
object to their initial values
 'Setting initial properties of White Pawns
 WPawn1.IsWhite = True
 WPawn1.PositionX = 0
 WPawn1.PositionY = 1
 WPawn1.Active = True
 WPawn1.Promotion = ""
 WPawn2.IsWhite = True
 WPawn2.PositionX = 1
 WPawn2.PositionY = 1
 WPawn2.Active = True
 WPawn2.Promotion = ""
 WPawn3.IsWhite = True
 WPawn3.PositionX = 2
 WPawn3.PositionY = 1
 WPawn3.Active = True
 WPawn3.Promotion = ""
 WPawn4.IsWhite = True
 WPawn4.PositionX = 3
 WPawn4.PositionY = 1
 WPawn4.Active = True
 WPawn4.Promotion = ""

Aman Gill 7276

93

 WPawn5.IsWhite = True
 WPawn5.PositionX = 4
 WPawn5.PositionY = 1
 WPawn5.Active = True
 WPawn5.Promotion = ""
 WPawn6.IsWhite = True
 WPawn6.PositionX = 5
 WPawn6.PositionY = 1
 WPawn6.Active = True
 WPawn6.Promotion = ""
 WPawn7.IsWhite = True
 WPawn7.PositionX = 6
 WPawn7.PositionY = 1
 WPawn7.Active = True
 WPawn7.Promotion = ""
 WPawn8.IsWhite = True
 WPawn8.PositionX = 7
 WPawn8.PositionY = 1
 WPawn8.Active = True
 WPawn8.Promotion = ""
 'White Bishops
 WBishop1.IsWhite = True
 WBishop1.PositionX = 2
 WBishop1.PositionY = 0
 WBishop1.Active = True
 WBishop2.IsWhite = True
 WBishop2.PositionX = 5
 WBishop2.PositionY = 0
 WBishop2.Active = True
 'White Knights
 WKnight1.IsWhite = True
 WKnight1.PositionX = 1
 WKnight1.PositionY = 0
 WKnight1.Active = True
 WKnight2.IsWhite = True
 WKnight2.PositionX = 6
 WKnight2.PositionY = 0
 WKnight2.Active = True
 'White Rooks
 WRook1.IsWhite = True
 WRook1.PositionX = 0
 WRook1.PositionY = 0
 WRook1.Active = True
 WRook2.IsWhite = True
 WRook2.PositionX = 7
 WRook2.PositionY = 0
 WRook2.Active = True
 'White Queen
 WQueen.IsWhite = True
 WQueen.PositionX = 3
 WQueen.PositionY = 0
 WQueen.Active = True
 'White King
 WKing.IsWhite = True
 WKing.PositionX = 4
 WKing.PositionY = 0
 WKing.Active = True
 'Black Pawns
 BPawn1.IsWhite = False
 BPawn1.PositionX = 0
 BPawn1.PositionY = 6
 BPawn1.Active = True

Aman Gill 7276

94

 BPawn1.Promotion = ""
 BPawn2.IsWhite = False
 BPawn2.PositionX = 1
 BPawn2.PositionY = 6
 BPawn2.Active = True
 BPawn2.Promotion = ""
 BPawn3.IsWhite = False
 BPawn3.PositionX = 2
 BPawn3.PositionY = 6
 BPawn3.Active = True
 BPawn3.Promotion = ""
 BPawn4.IsWhite = False
 BPawn4.PositionX = 3
 BPawn4.PositionY = 6
 BPawn4.Active = True
 BPawn4.Promotion = ""
 BPawn5.IsWhite = False
 BPawn5.PositionX = 4
 BPawn5.PositionY = 6
 BPawn5.Active = True
 BPawn5.Promotion = ""
 BPawn6.IsWhite = False
 BPawn6.PositionX = 5
 BPawn6.PositionY = 6
 BPawn6.Active = True
 BPawn6.Promotion = ""
 BPawn7.IsWhite = False
 BPawn7.PositionX = 6
 BPawn7.PositionY = 6
 BPawn7.Active = True
 BPawn7.Promotion = ""
 BPawn8.IsWhite = False
 BPawn8.PositionX = 7
 BPawn8.PositionY = 6
 BPawn8.Active = True
 BPawn8.Promotion = ""
 'Black Bishops
 BBishop1.IsWhite = False
 BBishop1.PositionX = 2
 BBishop1.PositionY = 7
 BBishop1.Active = True
 BBishop2.IsWhite = False
 BBishop2.PositionX = 5
 BBishop2.PositionY = 7
 BBishop2.Active = True
 'Black Knights
 BKnight1.IsWhite = False
 BKnight1.PositionX = 1
 BKnight1.PositionY = 7
 BKnight1.Active = True
 BKnight2.IsWhite = False
 BKnight2.PositionX = 6
 BKnight2.PositionY = 7
 BKnight2.Active = True
 'Black Rooks
 BRook1.IsWhite = False
 BRook1.PositionX = 0
 BRook1.PositionY = 7
 BRook1.Active = True
 BRook2.IsWhite = False
 BRook2.PositionX = 7
 BRook2.PositionY = 7

Aman Gill 7276

95

 BRook2.Active = True
 'Black Queen
 BQueen.IsWhite = False
 BQueen.PositionX = 3
 BQueen.PositionY = 7
 BQueen.Active = True
 'Black King
 BKing.IsWhite = False
 BKing.PositionX = 4
 BKing.PositionY = 7
 BKing.Active = True
 End Sub
 Private Sub InitializeVariables() 'Sets the values of the variables in the game to
their initial values
 'Sets the turn to White for the start of the game
 If WhiteTurn = False Then
 ChangeTurn()
 End If
 'Reset TurnCount
 TurnCount = 0
 'Resetting these values to indicate that the kings and rooks have not yet
moved in the current game
 Chess.CastleWKMoved = False
 Chess.CastleBKMoved = False
 Chess.CastleWQMoved = False
 Chess.CastleBQMoved = False
 'Form1.Grid array values
 Chess.Grid(0, 0) = "WRook1"
 Chess.Grid(1, 0) = "WKnight1"
 Chess.Grid(2, 0) = "WBishop1"
 Chess.Grid(3, 0) = "WQueen"
 Chess.Grid(4, 0) = "WKing"
 Chess.Grid(5, 0) = "WBishop2"
 Chess.Grid(6, 0) = "WKnight2"
 Chess.Grid(7, 0) = "WRook2"
 Chess.Grid(0, 1) = "WPawn1"
 Chess.Grid(1, 1) = "WPawn2"
 Chess.Grid(2, 1) = "WPawn3"
 Chess.Grid(3, 1) = "WPawn4"
 Chess.Grid(4, 1) = "WPawn5"
 Chess.Grid(5, 1) = "WPawn6"
 Chess.Grid(6, 1) = "WPawn7"
 Chess.Grid(7, 1) = "WPawn8"
 Chess.Grid(0, 7) = "BRook1"
 Chess.Grid(1, 7) = "BKnight1"
 Chess.Grid(2, 7) = "BBishop1"
 Chess.Grid(3, 7) = "BQueen"
 Chess.Grid(4, 7) = "BKing"
 Chess.Grid(5, 7) = "BBishop2"
 Chess.Grid(6, 7) = "BKnight2"
 Chess.Grid(7, 7) = "BRook2"
 Chess.Grid(0, 6) = "BPawn1"
 Chess.Grid(1, 6) = "BPawn2"
 Chess.Grid(2, 6) = "BPawn3"
 Chess.Grid(3, 6) = "BPawn4"
 Chess.Grid(4, 6) = "BPawn5"
 Chess.Grid(5, 6) = "BPawn6"
 Chess.Grid(6, 6) = "BPawn7"
 Chess.Grid(7, 6) = "BPawn8"
 'Sets the Grid values of all the empty squares in the middle of the board to
nothing
 For j = 2 To 5

Aman Gill 7276

96

 For i = 0 To 7
 Chess.Grid(i, j) = ""
 Next
 Next
 Chess.EPPosX = 0
 Chess.EPPosY = 0
 'Sets initial values of these variables to remove bugs associated with En
Passant
 End Sub
 Private Sub CallRules(ByVal X As Integer, ByVal Y As Integer)
 'Looks at the value in the Grid for the coordinates given, and calls the
CheckValidMoves sub for the corresponding object
 'then checks through the moves listed as valid to see if they put their King
in check, then list those that do as invalid
 Select Case Chess.Grid(X, Y)
 Case "BPawn1"
 BPawn1.CheckValidMoves()
 Case "BPawn2"
 BPawn2.CheckValidMoves()
 Case "BPawn3"
 BPawn3.CheckValidMoves()
 Case "BPawn4"
 BPawn4.CheckValidMoves()
 Case "BPawn5"
 BPawn5.CheckValidMoves()
 Case "BPawn6"
 BPawn6.CheckValidMoves()
 Case "BPawn7"
 BPawn7.CheckValidMoves()
 Case "BPawn8"
 BPawn8.CheckValidMoves()
 Case "BBishop1"
 BBishop1.CheckValidMoves()
 Case "BBishop2"
 BBishop2.CheckValidMoves()
 Case "BKnight1"
 BKnight1.CheckValidMoves()
 Case "BKnight2"
 BKnight2.CheckValidMoves()
 Case "BRook1"
 BRook1.CheckValidMoves()
 Case "BRook2"
 BRook2.CheckValidMoves()
 Case "BQueen"
 BQueen.CheckValidMoves()
 Case "BKing"
 BKing.CheckValidMoves()
 Case "WPawn1"
 WPawn1.CheckValidMoves()
 Case "WPawn2"
 WPawn2.CheckValidMoves()
 Case "WPawn3"
 WPawn3.CheckValidMoves()
 Case "WPawn4"
 WPawn4.CheckValidMoves()
 Case "WPawn5"
 WPawn5.CheckValidMoves()
 Case "WPawn6"
 WPawn6.CheckValidMoves()
 Case "WPawn7"
 WPawn7.CheckValidMoves()
 Case "WPawn8"

Aman Gill 7276

97

 WPawn8.CheckValidMoves()
 Case "WBishop1"
 WBishop1.CheckValidMoves()
 Case "WBishop2"
 WBishop2.CheckValidMoves()
 Case "WKnight1"
 WKnight1.CheckValidMoves()
 Case "WKnight2"
 WKnight2.CheckValidMoves()
 Case "WRook1"
 WRook1.CheckValidMoves()
 Case "WRook2"
 WRook2.CheckValidMoves()
 Case "WQueen"
 WQueen.CheckValidMoves()
 Case "WKing"
 WKing.CheckValidMoves()
 End Select
 'Checks the colour of the piece to use as a parameter for the
PutSelfInCheckCheck sub
 Dim IsWhite As Boolean
 If Chess.Grid(X, Y).StartsWith("W") = True Then
 IsWhite = True
 Else
 IsWhite = False
 End If
 'Checks for squares that have been listed as valid moves, then check them
further with PutSelfInCheckCheck
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 Chess.ValidCheck(i, j) = PutSelfInCheckCheck(i, j, IsWhite)
 End If
 Next
 Next
 End Sub
 Private Sub MovePiece(ByVal X As Integer, ByVal Y As Integer)
 'This sub moves the pieces on the board (Grid values, Piece properties and
images on the board are changed)
 'It first checks to see whether a special move is being performed.
 'If so, the values are specifically changed based on which move is made.
 If Chess.CastleWK = True And X = 6 And Y = 0 Then
 Chess.E1.Image = Nothing
 Chess.F1.Image = My.Resources.White_Rook
 Chess.G1.Image = My.Resources.White_King
 Chess.H1.Image = Nothing
 Chess.Grid(4, 0) = ""
 Chess.Grid(5, 0) = "WRook2"
 Chess.Grid(6, 0) = "WKing"
 Chess.Grid(7, 0) = ""
 ChangeCoordinates(5, 0)
 ChangeCoordinates(6, 0)
 SpecialMove = "CastleWK"
 RecordMove(X, Y)
 ElseIf Chess.CastleWQ = True And X = 2 And Y = 0 Then
 Chess.A1.Image = Nothing
 Chess.C1.Image = My.Resources.White_King
 Chess.D1.Image = My.Resources.White_Rook
 Chess.E1.Image = Nothing
 Chess.Grid(0, 0) = ""
 Chess.Grid(2, 0) = "WKing"
 Chess.Grid(3, 0) = "WRook1"

Aman Gill 7276

98

 Chess.Grid(4, 0) = ""
 ChangeCoordinates(2, 0)
 ChangeCoordinates(3, 0)
 SpecialMove = "CastleWQ"
 RecordMove(X, Y)
 ElseIf Chess.CastleBK = True And X = 6 And Y = 7 Then
 Chess.E8.Image = Nothing
 Chess.F8.Image = My.Resources.Black_Rook1
 Chess.G8.Image = My.Resources.Black_King
 Chess.H8.Image = Nothing
 Chess.Grid(4, 7) = ""
 Chess.Grid(5, 7) = "BRook2"
 Chess.Grid(6, 7) = "BKing"
 Chess.Grid(7, 7) = ""
 ChangeCoordinates(5, 7)
 ChangeCoordinates(6, 7)
 SpecialMove = "CastleBK"
 RecordMove(X, Y)
 ElseIf Chess.CastleBQ = True And X = 2 And Y = 7 Then
 Chess.A8.Image = Nothing
 Chess.C8.Image = My.Resources.Black_King
 Chess.D8.Image = My.Resources.Black_Rook1
 Chess.E8.Image = Nothing
 Chess.Grid(0, 7) = ""
 Chess.Grid(2, 7) = "BKing"
 Chess.Grid(3, 7) = "BRook1"
 Chess.Grid(4, 7) = ""
 ChangeCoordinates(2, 7)
 ChangeCoordinates(3, 7)
 SpecialMove = "CastleBQ"
 RecordMove(X, Y)
 ElseIf Chess.EnPassant = True And X = Chess.EPPosX And Math.Abs(Chess.EPPosY -
Y) = 1 And Chess.X1 <> X And Chess.Grid(Chess.X1, Chess.Y1).Substring(1, 1) = "P" Then
 RecordMove(X, Y)
 ChangeActive(Chess.EPPosX, Chess.EPPosY)
 Board1.EnPassantImageChange(X, Y)
 Chess.Grid(X, Y) = Chess.Grid(Chess.X1, Chess.Y1)
 Chess.Grid(Chess.X1, Chess.Y1) = ""
 Chess.Grid(Chess.EPPosX, Chess.EPPosY) = ""
 ChangeCoordinates(X, Y)
 Else
 'If the move is not a special move, the following functions will change
the values using the following subs
 RecordMove(X, Y)
 CastleNull()
 If Chess.Grid(X, Y) <> "" Then
 ChangeActive(X, Y)
 End If
 Board1.ImageChange(X, Y)
 'Changes the grid value of the destination position to that of the initial
position,
 'then sets the initial position to nothing
 Chess.Grid(X, Y) = Chess.Grid(Chess.X1, Chess.Y1)
 Chess.Grid(Chess.X1, Chess.Y1) = ""
 ChangeCoordinates(X, Y)
 End If
 PawnPromotion(X, Y)
 Chess.EnPassant = False
 If Chess.Grid(X, Y).Substring(1, 1) = "P" Then
 If Chess.X1 = X And Math.Abs(Y - Chess.Y1) = 2 Then
 Chess.EnPassant = True
 Chess.EPPosX = X

Aman Gill 7276

99

 Chess.EPPosY = Y
 End If
 End If
 'If the King has been put into check, checkmate is then checked for.
 If CheckCheck(Not WhiteTurn) = True Then
 CheckMateCheck()
 End If
 End Sub
 Private Sub ChangeCoordinates(ByVal X As Integer, ByVal Y As Integer)
 'After the Grid value has been changed, it is then used to change the values
of the coordinates of the Piece objects
 Select Case Chess.Grid(X, Y)
 Case "BPawn1"
 BPawn1.PositionX = X
 BPawn1.PositionY = Y
 Case "BPawn2"
 BPawn2.PositionX = X
 BPawn2.PositionY = Y
 Case "BPawn3"
 BPawn3.PositionX = X
 BPawn3.PositionY = Y
 Case "BPawn4"
 BPawn4.PositionX = X
 BPawn4.PositionY = Y
 Case "BPawn5"
 BPawn5.PositionX = X
 BPawn5.PositionY = Y
 Case "BPawn6"
 BPawn6.PositionX = X
 BPawn6.PositionY = Y
 Case "BPawn7"
 BPawn7.PositionX = X
 BPawn7.PositionY = Y
 Case "BPawn8"
 BPawn8.PositionX = X
 BPawn8.PositionY = Y
 Case "BBishop1"
 BBishop1.PositionX = X
 BBishop1.PositionY = Y
 Case "BBishop2"
 BBishop2.PositionX = X
 BBishop2.PositionY = Y
 Case "BKnight1"
 BKnight1.PositionX = X
 BKnight1.PositionY = Y
 Case "BKnight2"
 BKnight2.PositionX = X
 BKnight2.PositionY = Y
 Case "BRook1"
 BRook1.PositionX = X
 BRook1.PositionY = Y
 Case "BRook2"
 BRook2.PositionX = X
 BRook2.PositionY = Y
 Case "BQueen"
 BQueen.PositionX = X
 BQueen.PositionY = Y
 Case "BKing"
 BKing.PositionX = X
 BKing.PositionY = Y
 Case "WPawn1"
 WPawn1.PositionX = X

Aman Gill 7276

100

 WPawn1.PositionY = Y
 Case "WPawn2"
 WPawn2.PositionX = X
 WPawn2.PositionY = Y
 Case "WPawn3"
 WPawn3.PositionX = X
 WPawn3.PositionY = Y
 Case "WPawn4"
 WPawn4.PositionX = X
 WPawn4.PositionY = Y
 Case "WPawn5"
 WPawn5.PositionX = X
 WPawn5.PositionY = Y
 Case "WPawn6"
 WPawn6.PositionX = X
 WPawn6.PositionY = Y
 Case "WPawn7"
 WPawn7.PositionX = X
 WPawn7.PositionY = Y
 Case "WPawn8"
 WPawn8.PositionX = X
 WPawn8.PositionY = Y
 Case "WBishop1"
 WBishop1.PositionX = X
 WBishop1.PositionY = Y
 Case "WBishop2"
 WBishop2.PositionX = X
 WBishop2.PositionY = Y
 Case "WKnight1"
 WKnight1.PositionX = X
 WKnight1.PositionY = Y
 Case "WKnight2"
 WKnight2.PositionX = X
 WKnight2.PositionY = Y
 Case "WRook1"
 WRook1.PositionX = X
 WRook1.PositionY = Y
 Case "WRook2"
 WRook2.PositionX = X
 WRook2.PositionY = Y
 Case "WQueen"
 WQueen.PositionX = X
 WQueen.PositionY = Y
 Case "WKing"
 WKing.PositionX = X
 WKing.PositionY = Y
 End Select
 End Sub
 Private Sub RecordMove(ByVal X As Integer, ByVal Y As Integer)
 'This sub creates a string, which is the chess notation of the move that was
just made,
 'and adds it to the Move Log
 Dim ChessNotation As String = ""
 'Special moves have specific chess notation
 Select Case SpecialMove
 Case "CastleWK"
 ChessNotation = "O-O"
 Case "CastleWQ"
 ChessNotation = "O-O-O"
 Case "CastleBK"
 ChessNotation = "O-O"
 Case "CastleBQ"

Aman Gill 7276

101

 ChessNotation = "O-O-O"
 Case ""
 'Adds the letter denoting which piece is being moved
 If Chess.Grid(Chess.X1, Chess.Y1).Substring(1, 2) = "Kn" Then
 ChessNotation = "N"
 Else
 ChessNotation = Chess.Grid(Chess.X1, Chess.Y1).Substring(1, 1)
 End If
 'If the move involves a capture, an "x" is added at this point
 If Chess.Grid(X, Y) <> "" Then
 ChessNotation = ChessNotation + "x"
 End If
 'This adds the position being moved to on to the end of the string
 ChessNotation = ChessNotation +
Board1.NumberToLetter(X).ToString.ToLower + (Y + 1).ToString
 End Select
 'After each player has made a move, the turncount goes up by one

 If WhiteTurn = True Then
 TurnCount += 1
 Chess.MoveLog.Text = Chess.MoveLog.Text & vbNewLine & TurnCount & "."
 End If
 Chess.MoveLog.Text = Chess.MoveLog.Text & " " & ChessNotation
 SpecialMove = ""
 End Sub
 Private Sub CastleNull() 'Marks a castling move as invalid if either of the pieces
involved in the castle moves
 Select Case Chess.Grid(Chess.X1, Chess.Y1)
 Case "WRook1"
 Chess.CastleWQMoved = True
 Case "WKing"
 Chess.CastleWQMoved = True
 Chess.CastleWKMoved = True
 Case "WRook2"
 Chess.CastleWKMoved = True
 Case "BRook1"
 Chess.CastleBQMoved = True
 Case "BKing"
 Chess.CastleBQMoved = True
 Chess.CastleBKMoved = True
 Case "BRook2"
 Chess.CastleBKMoved = True
 End Select
 End Sub
 Private Sub FalsifySpecialMoves() 'Resets special move checks so that they do not
always appear as valid after they have been marked as valid once.
 Chess.CastleWK = False
 Chess.CastleWQ = False
 Chess.CastleBK = False
 Chess.CastleBQ = False
 End Sub
 Private Function CheckCheck(ByVal KingColourWhite As Boolean)
 'Checks whether a move puts a King in check, returns true or false
 Dim X As Integer
 Dim Y As Integer
 Dim Check As Boolean = False
 Select Case KingColourWhite
 Case True
 'Checking if the White King is in check, checking whether any black
pieces are in a position to capture it
 X = WKing.PositionX
 Y = WKing.PositionY

Aman Gill 7276

102

 If BKnight1.Rules(X, Y) = True And BKnight1.Active = True Then
 Check = True
 ElseIf BKnight2.Rules(X, Y) = True And BKnight2.Active = True Then
 Check = True
 ElseIf BBishop1.Rules(X, Y) = True And BBishop1.Active = True Then
 Check = True
 ElseIf BBishop2.Rules(X, Y) = True And BBishop2.Active = True Then
 Check = True
 ElseIf BRook1.Rules(X, Y) = True And BRook1.Active = True Then
 Check = True
 ElseIf BRook2.Rules(X, Y) = True And BRook2.Active = True Then
 Check = True
 ElseIf BQueen.Rules(X, Y) = True And BQueen.Active = True Then
 Check = True
 ElseIf BPawn1.Rules(X, Y) = True And BPawn1.Active = True Then
 Check = True
 ElseIf BPawn2.Rules(X, Y) = True And BPawn2.Active = True Then
 Check = True
 ElseIf BPawn3.Rules(X, Y) = True And BPawn3.Active = True Then
 Check = True
 ElseIf BPawn4.Rules(X, Y) = True And BPawn4.Active = True Then
 Check = True
 ElseIf BPawn5.Rules(X, Y) = True And BPawn5.Active = True Then
 Check = True
 ElseIf BPawn6.Rules(X, Y) = True And BPawn6.Active = True Then
 Check = True
 ElseIf BPawn7.Rules(X, Y) = True And BPawn7.Active = True Then
 Check = True
 ElseIf BPawn8.Rules(X, Y) = True And BPawn8.Active = True Then
 Check = True
 End If
 Case False
 'Same here fore the Black King, checking all White Pieces.
 X = BKing.PositionX
 Y = BKing.PositionY
 If WKnight1.Rules(X, Y) = True And WKnight1.Active = True Then
 Check = True
 ElseIf WKnight2.Rules(X, Y) = True And WKnight2.Active = True Then
 Check = True
 ElseIf WBishop1.Rules(X, Y) = True And WBishop1.Active = True Then
 Check = True
 ElseIf WBishop2.Rules(X, Y) = True And WBishop2.Active = True Then
 Check = True
 ElseIf WRook1.Rules(X, Y) = True And WRook1.Active = True Then
 Check = True
 ElseIf WRook2.Rules(X, Y) = True And WRook2.Active = True Then
 Check = True
 ElseIf WQueen.Rules(X, Y) = True And WQueen.Active = True Then
 Check = True
 ElseIf WPawn1.Rules(X, Y) = True And WPawn1.Active = True Then
 Check = True
 ElseIf WPawn2.Rules(X, Y) = True And WPawn2.Active = True Then
 Check = True
 ElseIf WPawn3.Rules(X, Y) = True And WPawn3.Active = True Then
 Check = True
 ElseIf WPawn4.Rules(X, Y) = True And WPawn4.Active = True Then
 Check = True
 ElseIf WPawn5.Rules(X, Y) = True And WPawn5.Active = True Then
 Check = True
 ElseIf WPawn6.Rules(X, Y) = True And WPawn6.Active = True Then
 Check = True
 ElseIf WPawn7.Rules(X, Y) = True And WPawn7.Active = True Then

Aman Gill 7276

103

 Check = True
 ElseIf WPawn8.Rules(X, Y) = True And WPawn8.Active = True Then
 Check = True
 End If
 End Select
 Return Check
 End Function
 Private Sub ChangeActive(ByVal X As Integer, ByVal Y As Integer)
 'Simply switches a piece's active state from true to false or vice-versa
 'A non-active piece is one that has been captured. This sub is used when a
piece has been captured, or for
 'simulating a capture when checking whether a move puts the player's own King
in check
 Select Case Chess.Grid(X, Y)
 Case "BPawn1"
 BPawn1.Active = Not BPawn1.Active
 Case "BPawn2"
 BPawn2.Active = Not BPawn2.Active
 Case "BPawn3"
 BPawn3.Active = Not BPawn3.Active
 Case "BPawn4"
 BPawn4.Active = Not BPawn4.Active
 Case "BPawn5"
 BPawn5.Active = Not BPawn5.Active
 Case "BPawn6"
 BPawn6.Active = Not BPawn6.Active
 Case "BPawn7"
 BPawn7.Active = Not BPawn7.Active
 Case "BPawn8"
 BPawn8.Active = Not BPawn8.Active
 Case "BBishop1"
 BBishop1.Active = Not BBishop1.Active
 Case "BBishop2"
 BBishop2.Active = Not BBishop2.Active
 Case "BKnight1"
 BKnight1.Active = Not BKnight1.Active
 Case "BKnight2"
 BKnight2.Active = Not BKnight2.Active
 Case "BRook1"
 BRook1.Active = Not BRook1.Active
 Case "BRook2"
 BRook2.Active = Not BRook2.Active
 Case "BQueen"
 BQueen.Active = Not BQueen.Active
 Case "WPawn1"
 WPawn1.Active = Not WPawn1.Active
 Case "WPawn2"
 WPawn2.Active = Not WPawn2.Active
 Case "WPawn3"
 WPawn3.Active = Not WPawn3.Active
 Case "WPawn4"
 WPawn4.Active = Not WPawn4.Active
 Case "WPawn5"
 WPawn5.Active = Not WPawn5.Active
 Case "WPawn6"
 WPawn6.Active = Not WPawn6.Active
 Case "WPawn7"
 WPawn7.Active = Not WPawn7.Active
 Case "WPawn8"
 WPawn8.Active = Not WPawn8.Active
 Case "WBishop1"
 WBishop1.Active = Not WBishop1.Active

Aman Gill 7276

104

 Case "WBishop2"
 WBishop2.Active = Not WBishop2.Active
 Case "WKnight1"
 WKnight1.Active = Not WKnight1.Active
 Case "WKnight2"
 WKnight2.Active = Not WKnight2.Active
 Case "WRook1"
 WRook1.Active = Not WRook1.Active
 Case "WRook2"
 WRook2.Active = Not WRook2.Active
 Case "WQueen"
 WQueen.Active = Not WQueen.Active
 End Select
 End Sub
 Private Function PutSelfInCheckCheck(ByVal X As Integer, ByVal Y As Integer, ByVal
IsWhite As Boolean)
 'Checks whether a move puts the player making the move in check, returns true
or false.
 Dim IniPos, FinPos As String
 Dim Valid As Boolean
 'Stores what is in these spaces to restore later
 IniPos = Chess.Grid(Chess.X1, Chess.Y1)
 FinPos = Chess.Grid(X, Y)
 'If there is a piece that is capturable in the destination position, it is
changed to inactive for
 'checking what the state of the board would be after this move is made.
 ChangeActive(X, Y)
 Chess.Grid(Chess.X1, Chess.Y1) = ""
 Chess.Grid(X, Y) = IniPos
 If IniPos = "WKing" Then
 WKing.PositionX = X
 WKing.PositionY = Y
 ElseIf IniPos = "BKing" Then
 BKing.PositionX = X
 BKing.PositionY = Y
 End If
 'Checks whether the player's own King is in check after the move being checked
is made
 Valid = Not CheckCheck(IsWhite)
 'Returns board to previous state
 Chess.Grid(Chess.X1, Chess.Y1) = IniPos
 Chess.Grid(X, Y) = FinPos
 ChangeActive(X, Y)
 If IniPos = "WKing" Then
 WKing.PositionX = Chess.X1
 WKing.PositionY = Chess.Y1
 ElseIf IniPos = "BKing" Then
 BKing.PositionX = Chess.X1
 BKing.PositionY = Chess.Y1
 End If
 Return Valid
 End Function
 Private Sub CheckMateCheck()
 'This sub is called when a King is put in check
 'This checks every piece to see if it can make a move that will leave the
player's King out of check
 'If such a move can be made, CheckMate is marked as false
 Dim CheckMate As Boolean
 CheckMate = True
 Select Case WhiteTurn
 Case True
 If BPawn1.Active = True Then

Aman Gill 7276

105

 CallRules(BPawn1.PositionX, BPawn1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn2.Active = True Then
 CallRules(BPawn2.PositionX, BPawn2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn3.Active = True Then
 CallRules(BPawn3.PositionX, BPawn3.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn4.Active = True Then
 CallRules(BPawn4.PositionX, BPawn4.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn5.Active = True Then
 CallRules(BPawn5.PositionX, BPawn5.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn6.Active = True Then
 CallRules(BPawn6.PositionX, BPawn6.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn7.Active = True Then
 CallRules(BPawn7.PositionX, BPawn7.PositionY)
 For j = 0 To 7

Aman Gill 7276

106

 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BPawn8.Active = True Then
 CallRules(BPawn8.PositionX, BPawn8.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BBishop1.Active = True Then
 CallRules(BBishop1.PositionX, BBishop1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BBishop2.Active = True Then
 CallRules(BBishop2.PositionX, BBishop2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BKnight1.Active = True Then
 CallRules(BKnight1.PositionX, BKnight1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BKnight2.Active = True Then
 CallRules(BKnight2.PositionX, BKnight2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BRook1.Active = True Then
 CallRules(BRook1.PositionX, BRook1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then

Aman Gill 7276

107

 CheckMate = False
 End If
 Next
 Next
 End If
 If BRook2.Active = True Then
 CallRules(BRook2.PositionX, BRook2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If BQueen.Active = True Then
 CallRules(BQueen.PositionX, BQueen.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 CallRules(BKing.PositionX, BKing.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 Case False
 If WPawn1.Active = True Then
 CallRules(WPawn1.PositionX, WPawn1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WPawn2.Active = True Then
 CallRules(WPawn2.PositionX, WPawn2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WPawn3.Active = True Then
 CallRules(WPawn3.PositionX, WPawn3.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next

Aman Gill 7276

108

 Next
 End If
 If WPawn4.Active = True Then
 CallRules(WPawn4.PositionX, WPawn4.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WPawn5.Active = True Then
 CallRules(WPawn5.PositionX, WPawn5.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WPawn6.Active = True Then
 CallRules(WPawn6.PositionX, WPawn6.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WPawn7.Active = True Then
 CallRules(WPawn7.PositionX, WPawn7.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WPawn8.Active = True Then
 CallRules(WPawn8.PositionX, WPawn8.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WBishop1.Active = True Then
 CallRules(WBishop1.PositionX, WBishop1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If

Aman Gill 7276

109

 If WBishop2.Active = True Then
 CallRules(WBishop2.PositionX, WBishop2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WKnight1.Active = True Then
 CallRules(WKnight1.PositionX, WKnight1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WKnight2.Active = True Then
 CallRules(WKnight2.PositionX, WKnight2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WRook1.Active = True Then
 CallRules(WRook1.PositionX, WRook1.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WRook2.Active = True Then
 CallRules(WRook2.PositionX, WRook2.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 If WQueen.Active = True Then
 CallRules(WQueen.PositionX, WQueen.PositionY)
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End If
 CallRules(WKing.PositionX, WKing.PositionY)
 For j = 0 To 7

Aman Gill 7276

110

 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 CheckMate = False
 End If
 Next
 Next
 End Select
 'If it is Checkmate, the players are informed, and a # is appended to the end
of the notation
 'If it is not, a + is appended to indicate check
 If CheckMate = True Then
 Chess.WhiteTimer.Stop()
 Chess.BlackTimer.Stop()
 MsgBox("CheckMate")
 Chess.MoveLog.Text = Chess.MoveLog.Text + "#"
 Else
 Chess.MoveLog.Text = Chess.MoveLog.Text + "+"
 End If
 End Sub
 Private Sub PawnPromotion(X, Y)
 'If the piece being moved is a pawn and that pawn has not already been
promoted,
 'the corresponding object's "Promote" subroutine is called, and then if the
pawn is promoted, the image is changed
 If Chess.Grid(X, Y).Substring(1, 1) = "P" Then 'This checks if the piece is a
pawn
 'Checks which pawn it is, and calls the appropriate Promotion sub and then
the image change
 Select Case Chess.Grid(X, Y)
 Case "BPawn1"
 If BPawn1.Promotion = Nothing Then
 BPawn1.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn1.Promotion,
BPawn1.IsWhite)
 Case "BPawn2"
 If BPawn2.Promotion = Nothing Then
 BPawn2.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn2.Promotion,
BPawn2.IsWhite)
 Case "BPawn3"
 If BPawn3.Promotion = Nothing Then
 BPawn3.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn3.Promotion,
BPawn3.IsWhite)
 Case "BPawn4"
 If BPawn4.Promotion = Nothing Then
 BPawn4.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn4.Promotion,
BPawn4.IsWhite)
 Case "BPawn5"
 If BPawn5.Promotion = Nothing Then
 BPawn5.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn5.Promotion,
BPawn5.IsWhite)
 Case "BPawn6"
 If BPawn6.Promotion = Nothing Then
 BPawn6.Promote(X, Y)

Aman Gill 7276

111

 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn6.Promotion,
BPawn6.IsWhite)
 Case "BPawn7"
 If BPawn7.Promotion = Nothing Then
 BPawn7.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn7.Promotion,
BPawn7.IsWhite)
 Case "BPawn8"
 If BPawn8.Promotion = Nothing Then
 BPawn8.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, BPawn8.Promotion,
BPawn8.IsWhite)
 Case "WPawn1"
 If WPawn1.Promotion = Nothing Then
 MsgBox("B")
 WPawn1.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn1.Promotion,
WPawn1.IsWhite)
 Case "WPawn2"
 If WPawn2.Promotion = Nothing Then
 WPawn2.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn2.Promotion,
WPawn2.IsWhite)
 Case "WPawn3"
 If WPawn3.Promotion = Nothing Then
 WPawn3.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn3.Promotion,
WPawn3.IsWhite)
 Case "WPawn4"
 If WPawn4.Promotion = Nothing Then
 WPawn4.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn4.Promotion,
WPawn4.IsWhite)
 Case "WPawn5"
 If WPawn5.Promotion = Nothing Then
 WPawn5.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn5.Promotion,
WPawn5.IsWhite)
 Case "WPawn6"
 If WPawn6.Promotion = Nothing Then
 WPawn6.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn6.Promotion,
WPawn6.IsWhite)
 Case "WPawn7"
 If WPawn7.Promotion = Nothing Then
 WPawn7.Promote(X, Y)
 End If
 Board1.PromotedPawnImageChange(X, Y, WPawn7.Promotion,
WPawn7.IsWhite)
 Case "WPawn8"
 If WPawn8.Promotion = Nothing Then
 WPawn8.Promote(X, Y)
 End If

Aman Gill 7276

112

 Board1.PromotedPawnImageChange(X, Y, WPawn8.Promotion,
WPawn8.IsWhite)
 End Select
 End If
 End Sub
End Class

Board Class
Public Class Board
 Public Sub DisplayValidMoves()
 'Looks for all valid moves, then highlights those
 'The square that was clicked is indicated in green
 'If there is a Castle move valid, that is indicated in red
 For j = 0 To 7
 For i = 0 To 7
 If Chess.ValidCheck(i, j) = True Then
 Highlight(i, j)
 End If
 Next
 Next
 Dim IniPosition As String = NumberToLetter(Chess.X1)
 IniPosition = IniPosition + (Chess.Y1 + 1).ToString
 Chess.Controls(IniPosition).BackColor = Color.Green
 If Chess.CastleWK = True Then
 Chess.G1.BackColor = Color.Red
 ElseIf Chess.CastleWQ = True Then
 Chess.C1.BackColor = Color.Red
 ElseIf Chess.CastleBK = True Then
 Chess.G8.BackColor = Color.Red
 ElseIf Chess.CastleBQ = True Then
 Chess.C8.BackColor = Color.Red
 End If
 End Sub
 Private Sub Highlight(ByVal X As Integer, ByVal Y As Integer)
 'Changes the background colour of a given square to yellow
 Dim str As String = NumberToLetter(X)
 str = str + (Y + 1).ToString
 Chess.Controls(str).BackColor = Color.Yellow
 End Sub
 Public Sub RevertColour()
 'Changes the background colour of all squares to their default colours.
 Dim Square As String
 For j = 1 To 8
 For i = 0 To 7
 Square = NumberToLetter(i)
 Square = Square + j.ToString
 If (i Mod 2 = 1 And j Mod 2 = 0) Or (i Mod 2 = 0 And j Mod 2 = 1) Then
 Chess.Controls(Square).BackColor = Color.DimGray
 ElseIf (i Mod 2 = 0 And j Mod 2 = 0) Or (i Mod 2 = 1 And j Mod 2 = 1)
Then
 Chess.Controls(Square).BackColor = Color.White
 End If
 Next
 Next
 End Sub
 Public Function NumberToLetter(ByVal X As Integer)
 'Converts an X coordinate into the corresponding letter for the name of a
PictureBox
 Dim Str As String = ""
 Select Case X
 Case 0

Aman Gill 7276

113

 Str = "A"
 Case 1
 Str = "B"
 Case 2
 Str = "C"
 Case 3
 Str = "D"
 Case 4
 Str = "E"
 Case 5
 Str = "F"
 Case 6
 Str = "G"
 Case 7
 Str = "H"
 End Select
 Return Str
 End Function
 Public Sub ImageChange(ByVal X As Integer, ByVal Y As Integer)
 'Sets the image of the destination square to whatever was in the initial
square
 'then sets the image of the initial square to nothing
 Dim DestSquare As String
 Dim IniSquare As String
 DestSquare = NumberToLetter(X) + (Y + 1).ToString
 IniSquare = NumberToLetter(Chess.X1) + (Chess.Y1 + 1).ToString
 Select Case Chess.Grid(Chess.X1, Chess.Y1).TrimEnd("1", "2", "3", "4", "5",
"6", "7", "8")
 Case "WPawn"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.White_Pawn
 Case "BPawn"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.Black_Pawn
 Case "WBishop"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.White_Bishop
 Case "BBishop"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.Black_Bishop
 Case "WKnight"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.White_Knight
 Case "BKnight"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.Black_Knight1
 Case "WRook"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.White_Rook
 Case "BRook"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.Black_Rook1
 Case "WQueen"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.White_Queen
 Case "BQueen"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.Black_Queen
 Case "WKing"
 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.White_King
 Case "BKing"

Aman Gill 7276

114

 DirectCast(Chess.Controls(DestSquare), PictureBox).Image =
My.Resources.Black_King
 End Select
 DirectCast(Chess.Controls(IniSquare), PictureBox).Image = Nothing
 End Sub
 Public Sub ResetPiecePositions()
 'Sets the images of all PictureBoxes to their initial states
 Dim Square As String
 Chess.A1.Image = My.Resources.White_Rook
 Chess.B1.Image = My.Resources.White_Knight
 Chess.C1.Image = My.Resources.White_Bishop
 Chess.D1.Image = My.Resources.White_Queen
 Chess.E1.Image = My.Resources.White_King
 Chess.F1.Image = My.Resources.White_Bishop
 Chess.G1.Image = My.Resources.White_Knight
 Chess.H1.Image = My.Resources.White_Rook
 For i = 0 To 7
 Square = NumberToLetter(i) & "2"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.White_Pawn
 Next
 Chess.A8.Image = My.Resources.Black_Rook1
 Chess.B8.Image = My.Resources.Black_Knight1
 Chess.C8.Image = My.Resources.Black_Bishop
 Chess.D8.Image = My.Resources.Black_Queen
 Chess.E8.Image = My.Resources.Black_King
 Chess.F8.Image = My.Resources.Black_Bishop
 Chess.G8.Image = My.Resources.Black_Knight1
 Chess.H8.Image = My.Resources.Black_Rook1
 For i = 0 To 7
 Square = NumberToLetter(i) & "7"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.Black_Pawn
 Next
 For j = 3 To 6
 For i = 0 To 7
 Square = NumberToLetter(i) & j
 DirectCast(Chess.Controls(Square), PictureBox).Image = Nothing
 Next
 Next
 End Sub
 Public Sub PromotedPawnImageChange(ByVal X As Integer, ByVal Y As Integer, ByVal
Promote As Char, ByVal IsWhite As Boolean)
 'Used to change a Pawn's image to whatever it has been promoted to, if it has
been promoted
 Dim Square As String
 Square = NumberToLetter(X) & (Y + 1).ToString
 Select Case IsWhite
 Case True
 Select Case Promote
 Case "Q"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.White_Queen
 Case "N"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.White_Knight
 Case "R"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.White_Rook
 Case "B"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.White_Bishop

Aman Gill 7276

115

 End Select
 Case False
 Select Case Promote
 Case "Q"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.Black_Queen
 Case "N"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.Black_Knight1
 Case "R"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.Black_Rook1
 Case "B"
 DirectCast(Chess.Controls(Square), PictureBox).Image =
My.Resources.Black_Bishop
 End Select
 End Select
 End Sub
 Public Sub EnPassantImageChange(X, Y)
 'Image change when using En Passant
 'Usual ImageChange is called, then the image of the pawn being captured is
removed
 ImageChange(X, Y)
 Dim Square As String = NumberToLetter(Chess.EPPosX) + (Chess.EPPosY +
1).ToString
 DirectCast(Chess.Controls(Square), PictureBox).Image = Nothing
 End Sub
End Class

Piece Class
Public Class Piece
 Property IsWhite As Boolean
 Property PositionX As Integer
 Property PositionY As Integer
 Property Active As Boolean
 Sub CheckSpaces(ByVal PositionX As Integer, ByVal PositionY As Integer, ByVal X3
As Integer, ByVal Y3 As Integer, ByRef Valid As Boolean)
 'Used to check if there are pieces in the spaces between the starting and
destination positions
 If (X3 = 1 Or X3 = 0) And (Y3 = 1 Or Y3 = 0) Then
 Valid = True
 Else
 If Math.Abs(X3) = Math.Abs(Y3) Then
 If X3 > 0 And Y3 > 0 Then
 For i = 1 To X3 - 1
 If Chess.Grid(PositionX + i, PositionY + i) <> "" Then
 Valid = False
 End If
 Next
 ElseIf X3 > 0 And Y3 < 0 Then
 For i = 1 To X3 - 1
 If Chess.Grid(PositionX + i, PositionY - i) <> "" Then
 Valid = False
 End If
 Next
 ElseIf X3 < 0 And Y3 > 0 Then
 For i = 1 To Y3 - 1
 If Chess.Grid(PositionX - i, PositionY + i) <> "" Then
 Valid = False
 End If

Aman Gill 7276

116

 Next
 ElseIf X3 < 0 And Y3 < 0 Then
 For i = 1 To Math.Abs(X3) - 1
 If Chess.Grid(PositionX - i, PositionY - i) <> "" Then
 Valid = False
 End If
 Next
 End If
 ElseIf Math.Abs(X3) = 0 Then
 If Y3 > 0 Then
 For i = 1 To Y3 - 1
 If Chess.Grid(PositionX, PositionY + i) <> "" Then
 Valid = False
 End If
 Next
 ElseIf Y3 < 0 Then
 For i = 1 To Math.Abs(Y3) - 1
 If Chess.Grid(PositionX, PositionY - i) <> "" Then
 Valid = False
 End If
 Next
 End If
 ElseIf Math.Abs(Y3) = 0 Then
 If X3 > 0 Then
 For i = 1 To X3 - 1
 If Chess.Grid(PositionX + i, PositionY) <> "" Then
 Valid = False
 End If
 Next
 ElseIf X3 < 0 Then
 For i = 1 To Math.Abs(X3) - 1
 If Chess.Grid(PositionX - i, PositionY) <> "" Then
 Valid = False
 End If
 Next
 End If
 End If
 End If
 End Sub
 Sub CheckDestination(ByVal X2 As Integer, ByVal Y2 As Integer, ByRef Valid As
Boolean)
 'Used to check whether there is a piece at the destination position, and if
there is, whether it is capturable
 Select Case IsWhite
 Case True
 If Chess.Grid(X2, Y2).StartsWith("W") = True Then
 Valid = False
 End If
 Case False
 If Chess.Grid(X2, Y2).StartsWith("B") = True Then
 Valid = False
 End If
 End Select
 End Sub
End Class

Pawn Class
Public Class Pawn : Inherits Piece
 Property Promotion As Char = ""

Aman Gill 7276

117

 Public Sub CheckValidMoves()
 'Checks all spaces on the board for valid moves
 Dim Valid As Boolean
 Chess.X1 = PositionX
 Chess.Y1 = PositionY
 For j = 0 To 7
 For i = 0 To 7
 Valid = Rules(i, j)
 If Valid = True Then
 Chess.ValidCheck(i, j) = True
 Else
 Chess.ValidCheck(i, j) = False
 End If
 Next
 Next
 EnPassantCheck()
 End Sub
 Public Function Rules(ByVal X2 As Integer, ByVal Y2 As Integer)
 'Checks whether a given move can be performed for a given pawn
 Dim X3 As Integer = X2 - PositionX
 Dim Y3 As Integer = Y2 - PositionY
 Dim Valid As Boolean
 Select Case Promotion
 Case ""
 Select Case IsWhite
 Case True
 If X3 = 0 And Y3 = 2 And PositionY = 1 Then
 Valid = True 'Sets the Valid variable to True initially
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
'Since the piece is moving 2 spaces, the square between the starting and destination
squares needs to be checked for a piece.
 Call PawnMove(X2, Y2, Valid) 'Pawns have different rules
for moving and attacking, so separate subroutines will be created to check the
destination square for different types of movement.
 ElseIf X3 = 0 And Y3 = 1 Then
 Valid = True
 Call PawnMove(X2, Y2, Valid)
 ElseIf Math.Abs(X3) = 1 And Y3 = 1 Then 'Abs is the function
to provide an absolute value of X3, so that a value of -1 will be given as 1.
 Valid = True
 Call PawnAttack(X2, Y2, Valid) 'As the rules for a pawn
are different if they are attacking, a separate subroutine will be created to check
the destination square for a pawn moving diagonally.
 Else
 Valid = False
 End If
 Case False
 If X3 = 0 And Y3 = -2 And PositionY = 6 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call PawnMove(X2, Y2, Valid)
 ElseIf X3 = 0 And Y3 = -1 Then
 Valid = True
 Call PawnMove(X2, Y2, Valid)
 ElseIf Math.Abs(X3) = 1 And Y3 = -1 Then
 Valid = True
 Call PawnAttack(X2, Y2, Valid)
 Else
 Valid = False
 End If
 End Select
 Case "Q"

Aman Gill 7276

118

 'Queen rules if the pawn has been promoted to a Queen
 If Math.Abs(X3) = Math.Abs(Y3) And X3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 ElseIf X3 <> 0 And Y3 = 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 ElseIf X3 = 0 And Y3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 Case "N"
 'Knight rules if the pawn has been promoted to a Knight
 If (Math.Abs(X3) = 2 And Math.Abs(Y3) = 1) Or (Math.Abs(X3) = 1 And
Math.Abs(Y3) = 2) Then
 Valid = True
 Call CheckDestination(X2, Y2, Valid)
 End If
 Case "R"
 'Rook rules if the pawn has been promoted to a Rook
 If X3 <> 0 And Y3 = 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 ElseIf X3 = 0 And Y3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 Case "B"
 'Bishop rules if the pawn has been promoted to a Bishop
 If Math.Abs(X3) = Math.Abs(Y3) And X3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 End Select
 Return Valid
 End Function
 Private Sub PawnMove(ByVal X2 As Integer, ByVal Y2 As Integer, ByRef Valid As
Boolean)
 'Checks whether a pawn can move forward normally
 'Only if there is no piece in front
 If Chess.Grid(X2, Y2) <> "" Then
 Valid = False
 End If
 End Sub
 Private Sub PawnAttack(ByVal X2 As Integer, ByVal Y2 As Integer, ByRef Valid As
Boolean)
 'Checks whether a pawn can capture a piece
 If Chess.Grid(X2, Y2) = "" Then
 Valid = False
 End If

Aman Gill 7276

119

 Select Case IsWhite
 Case True
 If Chess.Grid(X2, Y2).StartsWith("W") = True Then
 Valid = False
 End If
 Case False
 If Chess.Grid(X2, Y2).StartsWith("B") = True Then
 Valid = False
 End If
 End Select
 End Sub
 Public Sub Promote(ByVal X As Integer, ByVal Y As Integer)
 'Requests user input for which piece the pawn should be promoted to
 If (IsWhite = True And Y = 7) Or (IsWhite = False And Y = 0) Then
 Try
 Promotion = InputBox("Which piece would you like to promote to? (Input
'Q' for Queen, 'N' for Knight, 'R' for Rook or 'B' for Bishop)").ToUpper
 Catch
 MsgBox("That is not a valid input.")
 End Try
 If Promotion <> "Q" And Promotion <> "N" And Promotion <> "R" And
Promotion <> "B" Then
 MsgBox("That is not a valid input.")
 Call Promote(X, Y)
 End If
 Chess.MoveLog.Text = Chess.MoveLog.Text + "=" & Promotion
 End If
 End Sub
 Private Sub EnPassantCheck()
 'Checks whether an En Passant move is possible
 If Chess.EnPassant = True Then
 Select Case IsWhite
 Case True
 If Math.Abs(Chess.EPPosX - PositionX) = 1 And Chess.EPPosY =
PositionY Then
 Chess.ValidCheck(Chess.EPPosX, Chess.EPPosY + 1) = True
 End If
 Case False
 If Math.Abs(Chess.EPPosX - PositionX) = 1 And Chess.EPPosY =
PositionY Then
 Chess.ValidCheck(Chess.EPPosX, Chess.EPPosY - 1) = True
 End If
 End Select
 End If
 End Sub
End Class

King Class
Public Class King : Inherits Piece
 Public Sub CheckValidMoves()
 'Checks all spaces on the board for valid moves
 Dim Valid As Boolean
 Chess.X1 = PositionX
 Chess.Y1 = PositionY
 For j = 0 To 7
 For i = 0 To 7
 Valid = Rules(i, j)
 If Valid = True Then
 Chess.ValidCheck(i, j) = True

Aman Gill 7276

120

 Else
 Chess.ValidCheck(i, j) = False
 End If
 Next
 Next
 CastleCheck()
 End Sub
 Private Function Rules(ByVal X2 As Integer, ByVal Y2 As Integer)
 'Checks whether a move can be made for a King
 Dim X3 As Integer = X2 - PositionX
 Dim Y3 As Integer = Y2 - PositionY
 Dim Valid As Boolean
 If (Math.Abs(X3) = 1 Or X3 = 0) And (Math.Abs(Y3) = 1 Or Y3 = 0) And Not (X3 =
0 And Y3 = 0) Then
 Valid = True
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 Return Valid
 End Function
 Private Sub CastleCheck()
 'Checks whether a Castle move can be made
 Select Case Chess.Grid(Chess.X1, Chess.Y1)
 Case "WKing"
 If Chess.CastleWKMoved = False And Chess.Grid(5, 0) = "" And
Chess.Grid(6, 0) = "" Then
 Chess.CastleWK = True
 Chess.ValidCheck(6, 0) = True
 End If
 If Chess.CastleWQMoved = False And Chess.Grid(1, 0) = "" And
Chess.Grid(2, 0) = "" And Chess.Grid(3, 0) = "" Then
 Chess.CastleWQ = True
 Chess.ValidCheck(2, 0) = True
 End If
 Case "BKing"
 If Chess.CastleBKMoved = False And Chess.Grid(5, 7) = "" And
Chess.Grid(6, 7) = "" Then
 Chess.CastleBK = True
 Chess.ValidCheck(6, 7) = True
 End If
 If Chess.CastleBQMoved = False And Chess.Grid(1, 7) = "" And
Chess.Grid(2, 7) = "" And Chess.Grid(3, 7) = "" Then
 Chess.CastleBQ = True
 Chess.ValidCheck(2, 7) = True
 End If
 End Select
 End Sub
End Class

Queen Class
Public Class Queen : Inherits Piece
 Public Sub CheckValidMoves()
 'Checks all spaces on the board for valid moves
 Chess.X1 = PositionX
 Chess.Y1 = PositionY
 Dim Valid As Boolean
 For j = 0 To 7
 For i = 0 To 7

Aman Gill 7276

121

 Valid = Rules(i, j)
 If Valid = True Then
 Chess.ValidCheck(i, j) = True
 Else
 Chess.ValidCheck(i, j) = False
 End If
 Next
 Next
 End Sub
 Public Function Rules(ByVal X2 As Integer, ByVal Y2 As Integer)
 'Checks whether a move is valid for a Queen
 Dim X3 As Integer = X2 - PositionX
 Dim Y3 As Integer = Y2 - PositionY
 Dim Valid As Boolean
 If Math.Abs(X3) = Math.Abs(Y3) And X3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 ElseIf X3 <> 0 And Y3 = 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 ElseIf X3 = 0 And Y3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 Return Valid
 End Function
End Class

Knight Class
Public Class Knight : Inherits Piece
 Public Sub CheckValidMoves()
 'Checks all spaces on the board for valid moves
 Dim Valid As Boolean
 Chess.X1 = PositionX
 Chess.Y1 = PositionY
 For j = 0 To 7
 For i = 0 To 7
 Valid = Rules(i, j)
 If Valid = True Then
 Chess.ValidCheck(i, j) = True
 Else
 Chess.ValidCheck(i, j) = False
 End If
 Next
 Next
 End Sub
 Public Function Rules(ByVal X2 As Integer, ByVal Y2 As Integer)
 'Checks whether a move is valid for a Knight
 Dim X3 As Integer = X2 - PositionX
 Dim Y3 As Integer = Y2 - PositionY
 Dim Valid As Boolean
 If (Math.Abs(X3) = 2 And Math.Abs(Y3) = 1) Or (Math.Abs(X3) = 1 And
Math.Abs(Y3) = 2) Then
 Valid = True

Aman Gill 7276

122

 Call CheckDestination(X2, Y2, Valid)
 End If
 Return Valid
 End Function
End Class

Rook Class
Public Class Rook : Inherits Piece
 Public Sub CheckValidMoves()
 'Checks all spaces on the board for valid moves
 Dim Valid As Boolean
 Chess.X1 = PositionX
 Chess.Y1 = PositionY
 For j = 0 To 7
 For i = 0 To 7
 Valid = Rules(i, j)
 If Valid = True Then
 Chess.ValidCheck(i, j) = True
 Else
 Chess.ValidCheck(i, j) = False
 End If
 Next
 Next
 End Sub
 Public Function Rules(ByVal X2 As Integer, ByVal Y2 As Integer)
 'Checks whether a move is valid for a Rook
 Dim X3 As Integer = X2 - PositionX
 Dim Y3 As Integer = Y2 - PositionY
 Dim Valid As Boolean
 If X3 <> 0 And Y3 = 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 ElseIf X3 = 0 And Y3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 Return Valid
 End Function
End Class

Bishop Class
Public Class Bishop : Inherits Piece
 Public Sub CheckValidMoves()
 'Checks all spaces on the board for valid moves
 Dim Valid As Boolean
 Chess.X1 = PositionX
 Chess.Y1 = PositionY
 For j = 0 To 7
 For i = 0 To 7
 Valid = Rules(i, j)
 If Valid = True Then
 Chess.ValidCheck(i, j) = True

Aman Gill 7276

123

 Else
 Chess.ValidCheck(i, j) = False
 End If
 Next
 Next
 End Sub
 Public Function Rules(ByVal X2 As Integer, ByVal Y2 As Integer)
 'Checks whether a move is valid for a Bishop
 Dim X3 As Integer = X2 - PositionX
 Dim Y3 As Integer = Y2 - PositionY
 Dim Valid As Boolean
 If Math.Abs(X3) = Math.Abs(Y3) And X3 <> 0 Then
 Valid = True
 Call CheckSpaces(PositionX, PositionY, X3, Y3, Valid)
 Call CheckDestination(X2, Y2, Valid)
 Else
 Valid = False
 End If
 Return Valid
 End Function
End Class

